MATLAB®
App Building

7

MATLAB

R2021a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® App Building
© COPYRIGHT 2000-2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

November 2000
June 2001

July 2002

June 2004
October 2004
March 2005
September 2005
March 2006
May 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021

Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only
Online Only

New for MATLAB 6.0 (Release 12)
Revised for MATLAB 6.1 (Release 12.1)
Revised for MATLAB 6.6 (Release 13)
Revised for MATLAB 7.0 (Release 14)
Revised for MATLAB 7.0.1 (Release 14SP1)
Revised for MATLAB 7.0.4 (Release 14SP2)
Revised for MATLAB 7.1 (Release 14SP3)
Revised for MATLAB 7.2 (Release 2006a)
Revised for MATLAB 7.2

Revised for MATLAB 7.3 (Release 2006b)
Revised for MATLAB 7.4 (Release 2007a)
Revised for MATLAB 7.5 (Release 2007b)
Revised for MATLAB 7.6 (Release 2008a)
Revised for MATLAB 7.7 (Release 2008b)
Revised for MATLAB 7.8 (Release 2009a)
Revised for MATLAB 7.9 (Release 2009b)
Revised for MATLAB 7.10 (Release 2010a)
Revised for MATLAB 7.11 (Release 2010b)
Revised for MATLAB 7.12 (Release 2011a)
Revised for MATLAB 7.13 (Release 2011b)
Revised for MATLAB 7.14 (Release 2012a)
Revised for MATLAB 8.0 (Release 2012b)
Revised for MATLAB 8.1 (Release 2013a)
Revised for MATLAB 8.2 (Release 2013b)
Revised for MATLAB 8.3 (Release 2014a)
Revised for MATLAB 8.4 (Release 2014b)
Revised for MATLAB 8.5 (Release 2015a)
Revised for MATLAB 8.6 (Release 2015b)
Revised for MATLAB 9.0 (Release 2016a)
Revised for MATLAB 9.1 (Release 2016b)
Revised for MATLAB 9.2 (Release 2017a)
Revised for MATLAB 9.3 (Release 2017b)
Revised for MATLAB 9.4 (Release 2018a)
Revised for MATLAB 9.5 (Release 2018b)
Revised for MATLAB 9.6 (Release 2019a)
Revised for MATLAB 9.7 (Release 2019b)
Revised for MATLAB 9.8 (Release 2020a)
Revised for MATLAB 9.9 (Release 2020b)
Revised for MATLAB 9.10 (Release 2021a)

Contents

Introduction to Creating Apps

About Apps in MATLAB Software

1]

WaystoBuild Apps 1-2
Use App Designert e e 1-2
Use MATLAB Functions to Create Apps Programmatically 1-2

A Simple Programmatic App

2|

Create and Run a Simple figure-Based App 2-2
CreateaCode File e 2-2
Create the Figure Window 2-3
Add Componentstothe Ul 2-3
Codethe AppBehavior 2-5
Verify Code and Runthe App 2-7

How to Create a App with GUIDE

3|

Create a Simple App Using GUIDE 3-2
Open a New Ul in the GUIDE Layout Editor 3-2
Set the Window Size in GUIDE, 3-3
Layoutthe Ul e 3-4
Code the Behaviorofthe App, 3-10
Runthe App ... oo 3-15
Files Generated by GUIDE 3-16
Code Filesand FIG-Files, 3-16
Code File Structuret 3-16
Adding Callback Templates to an Existing Code File 3-17
About GUIDE-Generated Callbacks 3-17

App Designer

App Designer Basics

4

Create and Run a Simple App Using App Designer 4-2
Runthe Tutorial 4-2
Tutorial Steps for Creatingthe App 4-2

GUIDE Migration Strategies 4-5
Export GUIDE Appto MATLAB File 4-5
Migrate GUIDE Appto App Designer 4-6

Display Graphics in App Designer 4-12
App Designer Graphics Overviewo, 4-12
Display Graphics on Existing Axesccin.. 4-12
Display Graphicsin Container 4-13
Create Axes Programmatically 4-13
Use Functions With No Target Argument 4-14
Use Functions That Don't Support Automatic Resizing 4-14
Unsupported Functionality 4-15

App Designer Preferences 4-17

Component Choices and Customizations

S|

App Building Components 5-2
Common Components 5-2
AXES o e 5-6
Containers and Figure Tools 5-7
Dialogs and Notifications 5-9
Instrumentation 5-12
Extensible Components 5-13
Toolbox Componentscoiiii i, 5-14

Table Array Data Types in App Designer Apps 5-15
Logical Data i e 5-15
Categorical Datao 5-15
Datetime Data 5-16
Duration Data i e 5-16
NonscalarData 5-17
Missing Data Values, 5-18
Example: App that Displays a Table Array 5-18

Add UI Components to App Designer Programmatically 5-20
Create the Component and Assign the Callback 5-20
Write the Callback 5-20
Example: Confirmation Dialog Box with a Close Function 5-21

vi Contents

Example: App that Populates Tree Nodes Based on a Data File 5-21

Create HTML File That Can Trigger or Respond to Data Changes

... 5-23
Include Setup Function in Your HTML File 5-23
Sample HTMLFile 5-23
Debugan HTMLFile 5-25

App Layout

6|

Lay Out Apps in App Designer Design View
Customize Components
Align and Space Componentsuiiiinrerrinn...
Group Components it
Reorder Components
Arrange Components in Containers
Create and Edit Context Menus

cncncnc.ncncncn
LR WN

Manage Resizable Apps in App Designer 6-11
Resizing Graphics Objects with Normalized Position Units 6-11
Alternatives to Default Auto-Resize Behaviors 6-11

Use Grid Layout Managerscouiiiiunnnnnnn 6-13
Add and Configure Grid Layout Manager 6-13
Convert Components from Pixel-Based Positions to Grid Layout

Manager 6-13
Example: Convert Components to Use Grid Layout Manager Instead of
Pixel-Based Positions 6-14

Apps with Auto-Reflow 6-16
What is Auto-Reflow? 6-16
Create New App with Auto-Reflow 6-17
Convert Existing App to Use Auto-Reflow 6-17
Example: App with Auto-Reflow 6-18

7

Manage Code in App Designer Code View 7-2
Manage Components, Functions, and Properties 7-2
Identify Editable Sectionsof Code 7-3
Program YOUT ADPD . . . oot 7-3
Fix Code Problems and Run-Time Errors 7-6
Personalize Code View Appearanceouuunennn. 7-6

Startup Tasks and Input Arguments in App Designer 7-8
Create a startupFcn Callback 7-8
Define Input App Argumentst 7-8

viii

Contents

Create Multiwindow Apps in App Designer 7-11

Overview of the Process 7-11
Send Information to the Dialog Box 7-11
Return Information to the Main App 7-13
Manage Windows When They Close 7-13
Example: Plotting App That Opens a DialogBox 7-14
Write Callbacks in App Designer 7-15
Create a Callback Function 7-15
Using Callback Function Input Arguments 7-16
Searching for Callbacksin YourCode 7-17
Deleting Callbacks 7-18
Example: App with a Slider Callback 7-18
Reuse Code Using Helper Functions 7-20
Createa Helper Function 7-20
Managing Helper Functions 7-21
Example: Helper Function that Initializes Plots and Displays Updated
Data .. e 7-21
Share Data Within App Designer Apps 7-23
Example: Share Plot Data and a Drop-Down List Selection 7-24
Compatibility Between Different Releases of App Designer 7-26
Save Copy AsVersus Save As 7-27
Opening Apps for Editing in a Newer Release 7-27
Use One Callback for Multiple App Designer Components 7-28
Example of a Shared Callback 7-28
Change or Disconnecta Callback 7-29

App Designer Examples

8|

App that Calculates and Plots Data Based on Numerical Input 8-2
App with Auto-Reflow That Updates Plot Based on User Selections 6.3
App that Uses Grid Layout to Manage Component Positions and

Resizing 8-4
App That Displays Data in a Hierarchy Using Tree 8-5
Create App that Uses Multiple Axes to Display Results of Image

Analysis 8-6
Create Polar Axes ProgrammaticallyinanApp 8-7
Create App with a Table That Can Be Sorted and Edited Interactively 6.0

Create App with Timer Object Configured Programmatically 8-10

Create App with Timer Object that Queries Website Data 8-12
Share Data in Multiwindow Apps 8-13
Display HTML Elements Styled by a Cascading Style Sheet 8-14

Keyboard Shortcuts

9

App Designer Keyboard Shortcuts 9
Shortcuts Available Throughout App Designer 9-
Component Browser Shortcuts 9
Design View Shortcuts
Code View Shortcuts

Create Uls Programmatically

Lay Out a Programmatic Ul

10|

Lay Out a UI Programmatically 10-2
Component Placement and Sizing 10-2
Managing the Layout in Resizable Uls 10-6
Manage the Stacking Order of Grouped Components 10-8

DPI-Aware Behavior in MATLAB 10-10
Visual Appearancettt 10-10
Using Object Properties 10-12
Using print, getframe, and publish Functions 10-13

Code a Programmatic App

11|

Write Callbacks for Apps Created Programmatically 11-2
Callbacks for Different User Actions 11-2
How to Specify Callback Property Values 11-3

ix

X

Contents

Manage Application-Defined Data

12

Share Data Among Callbacks 12-2
Overview of Data Sharing Techniques 12-2
Store Data in UserData or Other Object Properties 12-2
Store Data as ApplicationData 12-3
Create Nested Callback Functions 12-5
Store Data Using the guidata Function 12-5

Manage Callback Execution

13|

Interrupt Callback Execution 13-2
How to Control Interruption 13-2
Callback Behavior When Interruption is Allowed 13-2
Example e 13-2

Examples of Programmatic Apps

14

Programmatic App that DisplaysaTable 14-2
Create a Table Ul Component Within a Figure 14-2
Create a Table Containing Mixed Data Types 14-2
Customize the Display, 14-2
Enable Column Sorting and Restrict Editing of Cell Values 14-5
CreateaCallback 14-6
Get All Table Properties 14-6

Developing Classes of Ul Component Objects

15

Custom UI Component Development Overview 15-2
Structure of a Ul Component Class 15-2
Constructor Method 15-3
Public and Private Property Blocks 15-3
EventBlock 15-4
SetupMethod 15-5
Update Method 15-5
Example: Color Selector Ul Component 15-6

Manage Properties of Custom UI Components 15-9
Initialize Property Values 15-9
Validate Property Values 15-9
Customize the Property Display 15-10

Optimize the update Method 15-11
Example: Optimized Polynomial Fit Ul Component with Customized

Property Displayt 15-12
Configure Custom UI Components for App Designer 15-17
Custom UI Component Class Prerequisites 15-17
Create a UI Component Class to Configure 15-18
Configure App Designer Metadata 15-19
View Configured UI Component in App Designer 15-20
Reconfigure Ul Component 15-21
Remove Ul Component From App Designer 15-23
Share Configured Ul Component 15-23
Customize Properties of HTML UI Component 15-25
Class Construction Overviewcoovvininenn 15-25
RoundButton Class Implementation 15-26

Create Uls with GUIDE

What Is GUIDE?

16

GUIDE: Getting Started 16-2
ULLayout e e e 16-2
Ul Programmingouiiiiiein it 16-2

17|

GUIDE Preferences 17-2
Set Preferences e 17-2
Confirmation Preferences 17-2
Backward Compatibility Preference 17-4
All Other Preferencescc i 17-4

GUIDEOptions i, 17-8
The GUI Options Dialog Box 17-8
Resize Behavior 17-8
Command-Line Accessibility 17-9
Generate FIG-File and MATLABFile 17-10
Generate FIG-FileOnly 17-11

xi

xii

Contents

Lay Out a Ul Using GUIDE

18

19|

Set the UI Window Size in GUIDE 18-2
Prevent Existing Objects from Resizing with the Window 18-2

Set the Window Position or Size to an Exact Value 18-2
Maximize the Layout Area 18-3

Add Components to the GUIDE Layout Area 18-4
Place Components 18-4
User Interface Controls 18-8
Panels and Button Groups 18-22
AXES o 18-26
Table e 18-29
Resize GUIDE UI Components, 18-37
Create Menus for GUIDEAPPS 18-40
Menus forthe MenuBar 18-40
Context MEeNUS o vt e e 18-47
Programming a GUIDE App

Write Callbacks in GUIDE 19-2
Callbacks for Different User Actions 19-2
GUIDE-Generated Callback Functions and Property Values 19-4
GUIDE Callback Syntaxo, 19-4
Share Data Among GUIDE Callbacks 19-5
GUIDE Example: Share Slider Data Using guidata 19-10
GUIDE Example: Share Data Between TwWo Apps 19-10
GUIDE Example: Share Data Among Three Apps 19-11
Renaming and Removing GUIDE-Generated Callbacks 19-13
Callbacks for Specific Components 19-14
How to Use the Example Code 19-14
PushButton 19-14
Toggle Button 19-14
RadioButton 19-15
Check BOX . .\t 19-15
EditTextField 19-16
Slder ... 19-17

List BOX ..o 19-17
Pop-UpMenu i i e 19-18
Panel 19-19
Button Group 19-20
Menultem 19-21
Table 19-23
AXES . 19-24
Examples of GUIDE AppS 19-27

Examples of GUIDE Uls

20

GUIDE App With Parameters for Displaying Plots 20-2
Openand Runthe Example 20-2
Examinethe Code i, 20-3

Interactive List Box Appin GUIDE 20-6
Openand RunThe Example 20-6
Examine the Layout and Callback Code 20-7

Automatically Refresh Plotina GUIDEApp 20-9
Openand Runthe Example 20-9
Examinethe Code i 20-10

App Packaging

Packaging GUIs as Apps

21

Getand Create AppsS i e 21-2
What Isan App?o 21-2
Where to Get APpPS . . . oo it e 21-2
Why Create an App? . ..o it 21-3
Best Practices and Requirements for CreatinganApp 21-3

Package Apps From the MATLAB Toolstrip 21-5

Package Appsin App Designer 21-7

Modify APPS e 21-9

Waysto Share Apps 21-10
Share MATLAB Files Directly 21-10
Package YoUTr AP . .. oo it 21-12
Create a Deployed Web App 21-13
Create a Standalone Desktop Application 21-13

MATLAB App Installer File — mlappinstall 21-14

App Packaging Dependency Analysis 21-15

xiii

Introduction to Creating Apps

15

About Apps in MATLAB Software

1 About Apps in MATLAB Software

Ways to Build Apps

There are different ways to build MATLAB apps:

» Interactively, using App Designer
* Programmatically, using MATLAB functions

Each of these approaches offers a different workflow and a slightly different set of functionality. The
best choice for you depends on your project requirements and how you prefer to work.

Use App Designer

App Designer is a rich interactive environment introduced in R20164a, and it is the recommended
environment for building apps in MATLAB. It includes a fully integrated version of the MATLAB
editor. The layout and code views are tightly linked so that changes you make in one view
immediately affect the other. A larger set of interactive components is available, including date
picker, tree, and image. There are also features like a grid layout manager and automatic reflow
options to make your app detect and adapt to changes in screen size. For more information, see
“Develop Apps Using App Designer”.

1-2

Use MATLAB Functions to Create Apps Programmatically

You can also code the layout and behavior of your app entirely using MATLAB functions. In this
approach, you create a figure to serve as the container for your Ul using either the uifigure or
figure function. Then, you add components to it programmatically. Each type of figure supports
different components and properties. Select the workflow that best suits your project requirements.
For more information, see “Develop Apps Programmatically”.

Ways to Build Apps

Loan Amount 300000

Interest Rate % 0

Loan Period (Years) e

‘Montnly Payment. 143225

o 5 10 10 2w
e Time (Months)

%0 w0

See Also

Related Examples

. “Create and Run a Simple App Using App Designer” on page 4-2
. “Create and Run a Simple figure-Based App” on page 2-2

. “Display Graphics in App Designer” on page 4-12

. “GUIDE Migration Strategies” on page 4-5

A Simple Programmatic App

2 A Simple Programmatic App

Create and Run a Simple figure-Based App

2-2

Note This topic applies to apps you create programmatically using the figure function. For
alternative ways to build apps, see “Ways to Build Apps” on page 1-2.

This example shows how to create a simple app programmatically, such as the one shown here.

4| Figure 1: Simple GUI — O x

File Edit View Insert Tools Desktop Window Help o

Ucdde @ 0E|&E

Surf

WMesh

Contour

Select Data

Peaks e

Subsequent sections guide you through the process of creating this app.

If you prefer to view and run the code that created this app without creating it, set your current
folder to one to which you have write access. Copy the example code and open it in the Editor by
issuing the following MATLAB commands:

copyfile(fullfile(docroot, 'techdoc', 'creating guis',...
‘examples', 'simple gui2*.*')), fileattrib('simple gqui2*.*"',
edit simple gui2.m

W) ;
To run the code, go to the Run section in the Editor tab. Then click Run B

Create a Code File

Create a function file (as opposed to a script file, which contains a sequence of MATLAB commands
but does not define functions).

1 At the MATLAB prompt, type edit.
2 Type the following statement in the first line of the Editor.

function simple gqui2

Create and Run a Simple figure-Based App

Following the function statement, type these comments, ending with a blank line. (The comments
display at the command line in response to the help command.)

% SIMPLE GUI2 Select a data set from the pop-up menu, then
click one of the plot-type push buttons. Clicking the button
s plots the selected data in the axes.

(Leave a blank line here)

At the end of the file, after the blank line, add an end statement. This end statement is required
because the example uses nested functions. To learn more, see “Nested Functions”.

Save the file in your current folder or at a location that is on your MATLAB path.

° o°

Create the Figure Window

To create a container for your app’s user interface (UI), add the following code before the end
statement in your file:

%

f

Create and then hide the UI as it is being constructed.

= figure('Visible', 'off', 'Position',[360,500,450,285]);

The call to the figure function creates a traditional figure and sets the following properties:

The Visible property is set to 'off' to make the window invisible as components are added or
initialized. The window becomes visible when the UI has all its components and is initialized.

The Position property is set to a four-element vector that specifies the location of the UI on the
screen and its size: [distance from left, distance from bottom, width, height]. Default units are
pixels.

Add Components to the Ul

Create the push buttons, static text, pop-up menu, and axes components to the UL

1

Following the call to figure, add these statements to your code file to create three push button
components.

% Construct the components.

hsurf = uicontrol('Style', 'pushbutton’',...
'String', 'Surf', 'Position',[315,220,70,25]);
hmesh = uicontrol('Style', 'pushbutton’',...

'String', 'Mesh', 'Position',[315,180,70,25]);
hcontour = uicontrol('Style', 'pushbutton',...
'String', 'Contour', 'Position',[315,135,70,25]);

Each statement uses a series of uicontrol property/value pairs to define a push button:

» The Style property specifies that the uicontrol is a push button.
* The String property specifies the label on each push button: Surf, Mesh, and Contour.

* The Position property specifies the location and size of each push button: [distance from
left, distance from bottom, width, height]. Default units for push buttons are pixels.

Each uicontrol call returns the handle of the push button created.

Add the pop-up menu and a text label by adding these statements to the code file following the
push button definitions. The first statement creates the label. The second statement creates the
pop-up menu.

2-3

2 A Simple Programmatic App

2-4

htext = uicontrol('Style','text','String', 'Select Data',...
'Position',[325,90,60,15]);
hpopup = uicontrol('Style', 'popupmenu’,...

'String',{'Peaks', 'Membrane', 'Sinc'}, ...
'Position',[300,50,100,25]);

The pop-up menu component String property uses a cell array to specify the three items in the
pop-up menu: Peaks, Membrane, and Sinc.

The text component, the String property specifies instructions for the user.

For both components, the Position property specifies the size and location of each component:
[distance from left, distance from bottom, width, height]. Default units for these components are
pixels.

Add the axes by adding this statement to the code file.
ha = axes('Units', 'pixels', 'Position',[50,60,200,185]);

The Units property specifies pixels so that the axes has the same units as the other components.
Following all the component definitions, add this line to the code file to align all components,
except the axes, along their centers.
align([hsurf,hmesh,hcontour,htext, hpopupl, 'Center', 'None');

Add this command following the align command.

f.Visible = 'on';
Your code file should look like this:

function simple gqui2

% SIMPLE GUI2 Select a data set from the pop-up menu, then
click one of the plot-type push buttons. Clicking the button
plots the selected data in the axes.

o® o°

% Create and then hide the UI as it is being constructed.
f = figure('Visible', 'off', 'Position',[360,500,450,285]);

% Construct the components.

hsurf = uicontrol('Style', 'pushbutton', 'String', 'Surf', ...
'Position', [315,220,70,25]);

hmesh = uicontrol('Style', 'pushbutton', 'String', 'Mesh', ...
'Position',[315,180,70,25]);

hcontour = uicontrol('Style', 'pushbutton',...
'String', 'Contour’, ...
'Position', [315,135,70,25]);

htext = uicontrol('Style', 'text','String', 'Select Data',...
'Position',[325,90,60,15]);

hpopup = uicontrol('Style', 'popupmenu',...
'String', {'Peaks', 'Membrane', 'Sinc'}, ...
'Position',[300,50,100,25]);

ha = axes('Units', 'Pixels', 'Position',[50,60,200,185]);

align([hsurf,hmesh,hcontour,htext,hpopup], 'Center', 'None');

% Make the UI visible.
f.Visible = 'on';

end

Create and Run a Simple figure-Based App

6 Run your code by typing simple gui2 at the command line. You can select a data set in the pop-
up menu and click the push buttons, but nothing happens. This is because there is no callback
code in the file to service the pop-up menu or the buttons.

4 Figure 1 - O X

File Edit View Insert Tools Desktop Window Help k]

Ocdde @ 08| E

1

0.8
Mesh
0.6
Contour

0.4
0.2 Select Data

0 Peaks ~

0 0.5 1

Code the App Behavior
Program the Pop-Up Menu

The pop-up menu enables users to select the data to plot. When a user selects one of the three data
sets in the pop-up menu, MATLAB software sets the pop-up menu Value property to the index of the
selected menu item. The pop-up menu callback reads the pop-up menu Value property to determine
which item is currently displayed and sets current data accordingly.

Add the following callback to your file following the initialization code and before the final end
statement.

Pop-up menu callback. Read the pop-up menu Value property to
determine which item is currently displayed and make it the
current data. This callback automatically has access to
current data because this function is nested at a lower level.
function popup menu Callback(source,eventdata)
% Determine the selected data set.
str = source.String;
val = source.Value;
% Set current data to the selected data set.
switch str{val};
case 'Peaks' % User selects Peaks.
current data = peaks data;
case 'Membrane' % User selects Membrane.
current data = membrane data;
case 'Sinc' % User selects Sinc.
current data = sinc data;
end
end

d® o° o o°

Program the Push Buttons

Each of the three push buttons creates a different type of plot using the data specified by the current
selection in the pop-up menu. The push button callbacks plot the data in current data. They
automatically have access to current data because they are nested at a lower level.

2-5

2 A Simple Programmatic App

2-6

Add the following callbacks to your file following the pop-up menu callback and before the final end
statement.

% Push button callbacks. Each callback plots current data in the
% specified plot type.

function surfbutton Callback(source,eventdata)

% Display surf plot of the currently selected data.
surf(current _data);

end

function meshbutton Callback(source,eventdata)

% Display mesh plot of the currently selected data.
mesh(current_data);

end

function contourbutton Callback(source,eventdata)

% Display contour plot of the currently selected data.
contour(current data);

end

Program the Callbacks

When the user selects a data set from the pop-up menu or clicks one of the push buttons, MATLAB
software executes the callback associated with that particular event. Use each component's
Callback property to specify the name of the callback with which each event is associated.

1 Tothe uicontrol statement that defines the Surf push button, add the property/value pair
"Callback', {@surfbutton_Callback}

so that the statement looks like this:

hsurf = uicontrol('Style', 'pushbutton','String', 'Surf',...
'"Position', [315,220,70,25],...
'Callback', {@surfbutton_Callback});

Callback is the name of the property. surfbutton Callback is the name of the callback that
services the Surf push button.

2 Tothe uicontrol statement that defines the Mesh push button, add the property/value pair

'Callback',@meshbutton Callback
3 Tothe uicontrol statement that defines the Contour push button, add the property/value pair

'Callback',@contourbutton_Callback
4 Tothe uicontrol statement that defines the pop-up menu, add the property/value pair

"Callback',@popup_menu_Callback
For more information, see “Write Callbacks for Apps Created Programmatically” on page 11-2.

Initialize the Ul

Initialize the Ul, so it is ready when the window becomes visible. Make the UI behave properly when
it is resized by changing the component and figure units to normalized. This causes the components
to resize when the Ul is resized. Normalized units map the lower-left corner of the figure window to
(0,0) and the upper-right cornerto (1.0, 1.0).

Create and Run a Simple figure-Based App

Replace this code in editor:

% Make the UI visible.
f.Visible = 'on';

with this code:

% Initialize the UI.
% Change units to normalized so components resize automatically.

f.Units = 'normalized';
ha.Units = 'normalized’';
hsurf.Units = 'normalized';
hmesh.Units = 'normalized';
hcontour.Units = 'normalized';
htext.Units = 'normalized';
hpopup.Units = 'normalized’;

% Generate the data to plot.
peaks data = peaks(35);
membrane data = membrane;
[x,y] = meshgrid(-8:.5:8);

r = sqrt(x.”2+y.”2) + eps;
sinc data = sin(r)./r;

% Create a plot in the axes.
current data = peaks data;
surf(current _data);

% Assign a name to appear in the window title.
f.Name = 'Simple GUI';

% Move the window to the center of the screen.
movegui(f, 'center")

% Make the UI visible.
f.Visible = 'on';

Verify Code and Run the App

Make sure your code appears as it should, and then run it.
1 Verify that your code file looks like this:

function simple gqui2

SIMPLE GUI2 Select a data set from the pop-up menu, then
click one of the plot-type push buttons. Clicking the button
plots the selected data in the axes.

o® o° o°

Create and then hide the UI as it is being constructed.
= figure('Visible', 'off', 'Position',[360,500,450,285]);

—h o°

N

s Construct the components.

hsurf = uicontrol('Style', 'pushbutton’,...
'String', 'Surf', 'Position', [315,220,70,25],...
"Callback',@surfbutton_Callback);

hmesh = uicontrol('Style', 'pushbutton’,...

'String', 'Mesh', 'Position',[315,180,70,25],...

2-7

2 A Simple Programmatic App

"Callback',@meshbutton_Callback);

hcontour = uicontrol('Style"', 'pushbutton', ...
‘String', 'Contour', 'Position',[315,135,70,25],...
‘Callback',@contourbutton_Callback);

htext = uicontrol('Style','text','String', 'Select Data',...
'Position',[325,90,60,15]);
hpopup = uicontrol('Style', 'popupmenu’,...

'String',{'Peaks', 'Membrane', 'Sinc'}, ...
'Position', [300,50,100,25],...
'Callback',@popup_menu_Callback);
ha = axes('Units', 'pixels', 'Position',[50,60,200,185]);
align([hsurf,hmesh,hcontour,htext, hpopup], 'Center', '"None');

% Initialize the UI.
% Change units to normalized so components resize automatically.

f.Units = 'normalized’;
ha.Units = 'normalized';
hsurf.Units = 'normalized';
hmesh.Units = 'normalized';
hcontour.Units = 'normalized’;
htext.Units = 'normalized';
hpopup.Units = 'normalized';

% Generate the data to plot.
peaks data = peaks(35);
membrane_data = membrane;
[X,y] = meshgrid(-8:.5:8);

r = sqrt(x.”2+y.”2) + eps;
sinc_data = sin(r)./r;

% Create a plot in the axes.
current data = peaks data;
surf(current data);

% Assign the a name to appear in the window title.
f.Name = 'Simple GUI';

% Move the window to the center of the screen.
movegui(f, 'center')

Make the window visible.
.Visible = 'on';

—h o°

Pop-up menu callback. Read the pop-up menu Value property to
determine which item is currently displayed and make it the
current data. This callback automatically has access to
current data because this function is nested at a lower level.
function popup menu Callback(source,eventdata)
% Determine the selected data set.
str = get(source, 'String');
val = get(source, 'Value');
% Set current data to the selected data set.
switch str{val};
case 'Peaks' % User selects Peaks.
current data = peaks data;
case 'Membrane' % User selects Membrane.
current data = membrane data;
case 'Sinc' % User selects Sinc.

o® o of o°

Create and Run a Simple figure-Based App

current data = sinc _data;
end
end

% Push button callbacks. Each callback plots current data in the
% specified plot type.
function surfbutton Callback(source,eventdata)
% Display surf plot of the currently selected data.
surf(current data);
end

function meshbutton Callback(source,eventdata)

% Display mesh plot of the currently selected data.
mesh(current_data);

end

function contourbutton Callback(source,eventdata)
% Display contour plot of the currently selected data.
contour(current data);
end
end

Run your app by typing simple gui?2 at the command line. The initialization code causes it to
display the default peaks data with the surf function, making the UI look like this.

[\ Figure 1: Simple GUI - O X

File Edit View Inset Tools Desktop Window Help o

Ocdde @ 08| E

Surf

Mesh

Contour

Select Data

Peaks ~

In the pop-up menu, select Membrane, and then click the Mesh button. The UI displays a mesh
plot of the MathWorks® L-shaped Membrane logo.

Try other combinations before closing the UI.
Type help simple gui2 at the command line. MATLAB software displays the help text.
help simple gui2

SIMPLE GUI2 Select a data set from the pop-up menu, then

click one of the plot-type push buttons. Clicking the button
plots the selected data in the axes.

2-9

2 A Simple Programmatic App

See Also
Related Examples

. “Ways to Build Apps” on page 1-2
. “Create and Run a Simple App Using App Designer” on page 4-2

2-10

How to Create a App with GUIDE

3 Howto Create a App with GUIDE

Create a Simple App Using GUIDE

3-2

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

This example shows how to use GUIDE to create an app that has a simple user interface (UI), such as
the one shown here.

B A simple GUI o] @ |3
Surf
10, ~
"‘-.N‘q\
5 = push buttons
04 -~
5 Contour "/

-10 4 ; Select Data —— static text

40
4p |peaks ¥ | =r—— pop-up menu
M
0 o \

N\

axes

Subsequent sections guide you through the process of creating this app.

If you only want to view and run the code that created this app, set your current folder to one to
which you have write access. Copy the example code and open it in the Editor by issuing the
following MATLAB commands:

copyfile(fullfile(docroot, 'techdoc', 'creating guis',...
'examples', 'simple gui*.*')),fileattrib('simple gui*.*', '+w');

guide simple gui.fig;

edit simple gui.m

Click the Run P button to run the app.

Open a New Ul in the GUIDE Layout Editor
1 Open a new blank GUI in GUIDE by typing guide at the MATLAB prompt.

Create a Simple App Using GUIDE

Y untitledl fig
File Edit View

Nl saR9 >

Layout Tools Help

sBHbhd Q2| P

4

Tag: figurel Current Point: [310, 420]

Position: [520, 380, 560, 420]

(=] 2 /s

2 Display the names of the components in the component palette:

a Select File > Preferences > GUIDE.
b Select Show names in component palette.
¢ Click OK.

Set the Window Size in GUIDE

Set the size of the window by resizing the grid area in the Layout Editor. Click the lower-right corner
and drag it until the canvas is approximately 3 inches high and 4 inches wide. If necessary, make the

canvas larger.

3-3

3 How to Create a App with GUIDE

3-4

I untitled2 fig | [=

File Edit View Layout Tools Help

DEHd £mB2 ¢ [sB80hd B5% P
SIKI 10 LISU zng Zlﬂl 308 $1IW 1?0 250 .

L] Push Button
| ® Radio button |
E
1 Static Text
B Listbox
i Toggle Button
| Bnee |3
[?::::L—l z Click and drag
corner to resize

ZX ActrveX Control | 5

18

| 15

Tag: figurel Current Poant: [447, 7] Position: [520, 432, 450, 368

Layout the Ul

Add, align, and label the components in the UL

1 Add the three push buttons to the UI. Select the push button tool from the component palette at
the left side of the Layout Editor and drag it into the layout area. Create three buttons,
positioning them approximately as shown in the following figure.

T untitled.fig [E=8E=R (=

File Edit View Layout Tools Help
NEd §2R90 sRBHd B P

[X Select | i

Push Button |

[Push Button

| = Slider

[® Radio Button
[B Check Box
| B Edit Text

Push Button

= Push Button
I—]

|
|
|
|
] :
™ Static Text |
|
|
|
|
|
|

== Pop-up Menu

Toggle Button
E Table

[i{‘.‘j Axes

[[E Panel

Tag: pushbuttonb Current Point: [349, 3] Position: [322, 144, 69, 22]

[
[
| El Listbox
|
[

i

4 I

2 Add the remaining components to the UL

Create a Simple App Using GUIDE

Arrange the components as shown in the following figure. Resize the axes component to

A static text area

A pop-up menu
An axes

approximately 2-by-2 inches.

T4 untitled fig = =R
File Edit View Layout Tools Help

NEd $2R9 0 | 2Bhd TR b

[k Select] i
[Push Button l

| == Slider |

[® Radic Button]

| O CheckBox | axes]

| I Edit Text |

| Static Text |

[== Pop-up Menu l Static Text

|l Listbox |

[[Toggle Button l Pop-up Menu =

| B Table |

[i e l B -
| I% Panel | »
Tag: axesl Current Point: [434, 294] Position: [50, 52, 201, 201]

Align the Components

If several components have the same parent, you can use the Alignment Tool to align them to one

another. To align the three push buttons:

Select all three push buttons by pressing Ctrl and clicking them.
Select Tools > Align Objects.
Make these settings in the Alignment Tool:

Left-aligned in the horizontal direction.

20 pixels spacing between push buttons in the vertical direction.

3 Howto Create a App with GUIDE

-

7 untitled.fig

Tools Help

2Ry | 2HES B2 P

File Edit View Layout
=1y
[k Select

’ Push Button

| === Slider

[@ Radio Button
’ [Check Box
| EI Edit Ted

=3 Pop-up Menu

El Listbox

E Table
i{_‘ﬂ HAxes

4\ Align Objects

Vertical

Align

Distribute

Set spacing |20
Horizontal

Align

Distribute

Set spacing |20

B~ :

[} O .] .
m] ol = Push Button =
- .

.
-:Push Button :-
L) L] L]

Static Text

Pop-up Menu ~

)
)
)
)
)
)
| ™ Static Text]
l)
l)
’ Toggle Button]
[)
l)
l |

IE Panel

Tag: 3 components selects

ok] |

Cancel

tion: [Multi, Multi, 69, 22]

4 Click OK.

ﬁ untitled.fig
File Edit

DS &

[k Select

View Layout

[Push Button

| == Slider

[@ Radic Button
[B Check Box

| I Edit Text

™1 Static Text

=3 Pop-up Menu
El Listbox

E Table
i{i Axes

Tools Help

LRt 2Ehd BB P

axes]

fo e =]

{]
I:Push Button :-
. . .

| - t
= Push Button =
| .

Push Button :-

Static Text

Pop-up Menu ~

)
|
l
]
l
]
[l
[l
[]
[Toggle Button l
[]
[l
[|«

[E Panel

Tag: 3 compenents selected

Current Point: [202, 300]

Position: [316, Multi, 69, 22]

Label the Push Buttons

Each of the three push buttons specifies a plot type: surf, mesh, and contour. This section shows you

how to label the buttons with those options.

1 Select View > Property Inspector.

3-6

Create a Simple App Using GUIDE

I%Inspector: matlab.graphics.axis.... EI@
e
ALim [01] =
AlimMode auto -
ActivePositionProperty position -
AmbientlightColor] 3
BeingDeleted [T off
Box [off
BoxStyle back -
BusyAction queue
ButtonDownFen el &
Clim [011 =

2 In the layout area, click the top push button.

Push Button

Push Button

II.::?

Push Button

3 In the Property Inspector, select the String property, and then replace the existing value with
the word Surf.

Surf
Push Button

Push Button

4 Press the Enter key. The push button label changes to Surf.

Surf

Push Button

Push Button

5 Click each of the remaining push buttons in turn and repeat steps 3 and 4. Label the middle push
button Mesh, and the bottom button Contour.

3 Howto Create a App with GUIDE

List Pop-Up Menu Items

The pop-up menu provides a choice of three data sets: peaks, membrane, and sinc. These data sets
correspond to MATLAB functions of the same name. This section shows you how to list those data
sets as choices in the pop-menu.

In the layout area, click the pop-up menu.
In the Property Inspector, click the button next to String. The String dialog box displays.

.

I%Inspector: matlab.ui.contral UIC... |E”EHE|

2= 50wl

Position [69.8 5154 16.2 2.462] »
SliderStep H| 12 doublearray]

Style
o String @I

Tag
i _ ||Pop-up Menu
TooltipStrin

UIContextM
Units

UserData

LW -

3 Replace the existing text with the names of the three data sets: peaks, membrane, and sinc.
Press Enter to move to the next line.

String |

peaks
membrane
sinc

4 When you finish editing the items, click OK.

The first item in your list, peaks, appears in the pop-up menu in the layout area.

Peaks .. =

Modify the Static Text

In this UI, the static text serves as a label for the pop-up menu. This section shows you how to change
the static text to read Select Data.

3-8

Create a Simple App Using GUIDE

1
2

3

In the layout area, click the static text.

In the Property Inspector, click the button next to String. In the String dialog box that displays,
replace the existing text with the phrase Select Data.

@Inspector‘. matlab.ui.control.UIC... E\@

Position [69.8916.2 2.154] |3

SliderStep HH 12 double array] &
EIP =) static Text @
Style text -
Tag String @

Select Data

ok [s |

Click OK.

The phrase Select Data appears in the static text component above the pop-up menu.

Select Data

Peaks .. ~7)

Save the Layout

When you save a layout, GUIDE creates two files, a FIG-file and a code file. The FIG-file, with
extension . fig, is a binary file that contains a description of the layout. The code file, with
extension .m, contains MATLAB functions that control the app’s behavior.

Save and run your program by selecting Tools > Run.

GUIDE displays a dialog box displaying: “Activating will save changes to your figure file and
MATLAB code. Do you wish to continue?

Click Yes.
GUIDE opens a Save As dialog box in your current folder and prompts you for a FIG-file name.

Browse to any folder for which you have write privileges, and then enter the file name
simple gui for the FIG-file. GUIDE saves both the FIG-file and the code file using this name.

If the folder in which you save the files is not on the MATLAB path, GUIDE opens a dialog box
that allows you to change the current folder.

GUIDE saves the files simple gui.fig and simple gui.m, and then runs the program. It also
opens the code file in your default editor.

3-9

3 Howto Create a App with GUIDE

3-10

The app opens in a new window. Notice that the window lacks the standard menu bar and toolbar
that MATLAB figure windows display. You can add your own menus and toolbar buttons with
GUIDE, but by default a GUIDE app includes none of these components.

When you run simple gui, you can select a data set in the pop-up menu and click the push
buttons, but nothing happens. This is because the code file contains no statements to service the
pop-up menu and the buttons.

B simple_gui =5 NcH >

1
Surf

0.8
Wesh

0.6
Contour

0.4

Select Data
0.2
Peaks .. =
0
0 0.2 0.4 0.6 0.8 1

To run an app created with GUIDE without opening GUIDE, execute its code file by typing its name.
simple gui
You can also use the run command with the code file, for example,

run simple gui

Note Do not attempt to run your app by opening its FIG-file outside of GUIDE. If you do so, the
figure opens and appears ready to use, but the Ul does not initialize and the callbacks do not
function.

Code the Behavior of the App

When you saved your layout in the previous section, “Save the Layout” on page 3-9, GUIDE created
two files: a FIG-file, simple gui.fig, and a program file, simple gui.m. However, the app is not
responsive because simple gui.m does not contain any statements that perform actions. This
section shows you how to add code to the file to make the app functional.

Generate Data to Plot
This section shows you how to generate the data to be plotted when the user clicks a button. The

opening function generates this data by calling MATLAB functions. The opening function initializes
the UI when it opens, and it is the first callback in every GUIDE-generated code file.

Create a Simple App Using GUIDE

In this example, you add code that creates three data sets to the opening function. The code uses the
MATLAB functions peaks, membrane, and sinc.

1

Display the opening function in the MATLAB Editor.

If the file simple gui.m is not already open in the editor, open from the Layout Editor by
selecting View > Editor.

On the EDITOR tab, in the NAVIGATE section, click Go To, and then select
simple gui OpeningFcn.

The cursor moves to the opening function, which contains this code:

o°

- Executes just before simple gui is made visible.

function simple gui OpeningFcn(hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
varargin command line arguments to simple _g(see VARARGIN)

o° o° o° o° o°

o°

Choose default command line output for simple gui
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes simple gwait for user response (see UIRESUME)

% uiwait(handles.figurel);

Create data to plot by adding the following code to the opening function immediately after the
comment that begins % varargin. ..

% Create the data to plot.
handles.peaks=peaks(35);
handles.membrane=membrane;

[x,y] = meshgrid(-8:.5:8);

r = sqrt(x.”2+y.”2) + eps;

sinc = sin(r)./r;

handles.sinc = sinc;

% Set the current data value.
handles.current data = handles.peaks;
surf(handles.current_data)

The first six executable lines create the data using the MATLAB functions peaks, membrane, and
sinc. They store the data in the handles structure, an argument provided to all callbacks.
Callbacks for the push buttons can retrieve the data from the handles structure.

The last two lines create a current data value and set it to peaks, and then display the surf plot
for peaks. The following figure shows how the app looks when it first displays.

3-11

3 Howto Create a App with GUIDE

3-12

u simple_gui

(o] & ==

Wesh

Select Data

40

20 20 Peaks .. v:

Code Pop-Up Menu Behavior

The pop-up menu presents options for plotting the data. When the user selects one of the three plots,
MATLAB software sets the pop-up menu Value property to the index of the selected menu item. The
pop-up menu callback reads the pop-up menu Value property to determine the item that the menu
currently displays, and sets handles.current data accordingly.

1 Display the pop-up menu callback in the MATLAB Editor. In the GUIDE Layout Editor, right-click
the pop-up menu component, and then select View Callbacks > Callback.

Create a Simple App Using GUIDE

Select Data
Feaks -
. . Cut Ctrl+X
Copy Ctrl+C
Ctrl+V
Clear
|
Duplicate Ctrl+D
[350, €8, 81, Bring to Front Ctrl+F
Send to Back Ctrl+B

Object Browser

Editor

View Callbacks ! Callback I})
CreateFen

Property Inspector
DeleteFcn
ButtonDownFecn
KeyPressFcn

GUIDE displays the code file in the Editor, and moves the cursor to the pop-menu callback, which
contains this code:

- Executes on selection change in popupmenul.
unction popupmenul Callback(hObject, eventdata, handles)
hObject handle to popupmenul (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
5 handles structure with handles and user data (see GUIDATA)

Add the following code to the popupmenul Callback after the comment that begins %
handles...

X o° o° —h o°

This code first retrieves two pop-up menu properties:

e String — a cell array that contains the menu contents
* Value — the index into the menu contents of the selected data set

The code then uses a switch statement to make the selected data set the current data. The last
statement saves the changes to the handles structure.

% Determine the selected data set.

str = get(hObject, 'String');

val = get(hObject, 'Value');

% Set current data to the selected data set.

switch str{val};

case 'peaks' % User selects peaks.
handles.current data = handles.peaks;

case 'membrane' % User selects membrane.
handles.current data = handles.membrane;

3-13

3 Howto Create a App with GUIDE

case 'sinc' % User selects sinc.
handles.current data = handles.sinc;

end

% Save the handles structure.

guidata(hObject,handles)

Code Push Button Behavior

Each of the push buttons creates a different type of plot using the data specified by the current
selection in the pop-up menu. The push button callbacks get data from the handles structure and
then plot it.

1 Display the Surf push button callback in the MATLAB Editor. In the Layout Editor, right-click the
Surf push button, and then select View Callbacks > Callback.

| " I ‘
. Surf =

Cut Ctrl+X
Copy Ctrl+C
Mes ~
Ctrl+V
Clear
Contc Duplicate Ctrl+D
Bring to Front Ctrl+F
Send to Back Ctrl+EB
Selec
Object Browser
Peaks Editer
View Callbacks ' Callback
CreateFcn
Property Inspector
DeleteFcn
[ButtonDownFen
I
KeyPressFen

[350, 296, 69, 22]

In the Editor, the cursor moves to the Surf push button callback in the code file, which contains
this code:

- Executes on button press in pushbuttonl.
unction pushbuttonl Callback(hObject, eventdata, handles)
hObject handle to pushbuttonl (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB

° 0° o® —h o°

% handles structure with handles and user data (see GUIDATA)
2 Add the following code to the callback immediately after the comment that begins %
handles. ..

% Display surf plot of the currently selected data.
surf(handles.current data);

3 Repeat steps 1 and 2 to add similar code to the Mesh and Contour push button callbacks.

3-14

Create a Simple App Using GUIDE

* Add this code to the Mesh push button callback, pushbutton2 Callback:

% Display mesh plot of the currently selected data.
mesh(handles.current _data);

* Add this code to the Contour push button callback, pushbutton3 Callback:

% Display contour plot of the currently selected data.
contour(handles.current data);

4 Save your code by selecting File > Save.

Run the App

In “Code the Behavior of the App” on page 3-10, you programmed the pop-up menu and the push
buttons. You also created data for them to use and initialized the display. Now you can run your
program to see how it works.

1 Run your program from the Layout Editor by selecting Tools > Run.

simple_gui EI =] @

Surf

Wesh

Contour

Select Data

40

20 20 Peaks .. ¥

2 In the pop-up menu, select Membrane, and then click the Mesh button. The app displays a mesh
plot of the MathWorks L-shaped Membrane logo.

3 Try other combinations before closing the window.
See Also

Related Examples

. “Ways to Build Apps” on page 1-2

. “Create and Run a Simple App Using App Designer” on page 4-2
. “Create and Run a Simple figure-Based App” on page 2-2

3-15

3 Howto Create a App with GUIDE

Files Generated by GUIDE

3-16

In this section...

“Code Files and FIG-Files” on page 3-16

“Code File Structure” on page 3-16

“Adding Callback Templates to an Existing Code File” on page 3-17
“About GUIDE-Generated Callbacks” on page 3-17

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

Code Files and FIG-Files

By default, the first time you save or run your app, GUIDE save two files:

* A FIG-file, with extension . fig, that contains a complete description of the layout and each
component, such as push buttons, axes, panels, menus, and so on. The FIG-file is a binary file and
you cannot modify it except by changing the layout in GUIDE. FIG-files are specializations of MAT-
files. See “Custom Applications to Access MAT-Files” for more information.

* A code file, with extension .m, that initially contains initialization code and templates for some
callbacks that control behavior. You generally add callbacks you write for your components to this
file. As the callbacks are functions, the code file can never be a MATLAB script.

When you save your app for the first time, GUIDE automatically opens the code file in your default
editor.

The FIG-file and the code file must have the same name. These two files usually reside in the same
folder, and correspond to the tasks of laying out and programming the app. When you lay out the app
in the Layout Editor, your components and layout are stored in the FIG-file. When you program the
app, your code is stored in the corresponding code file.

Code File Structure

The code file that GUIDE generates is a function file. The name of the main function is the same as
the name of the code file. For example, if the name of the code file is mygui.m, then the name of the
main function is mygui. Each callback in the file is a local function of that main function.

When GUIDE generates a code file, it automatically includes templates for the most commonly used
callbacks for each component. The code file also contains initialization code, as well as an opening
function callback and an output function callback. It is your job to add code to the component
callbacks for your app to work as you want. You can also add code to the opening function callback
and the output function callback. The code file orders functions as shown in the following table.

Files Generated by GUIDE

Section Description

Comments Displayed at the command line in response to the help command.

Initialization GUIDE initialization tasks. Do not edit this code.

Opening function Performs your initialization tasks before the user has access to the UI.

Output function Returns outputs to the MATLAB command line after the opening function
returns control and before control returns to the command line.

Component and figure Control the behavior of the window and of individual components.

callbacks MATLAB software calls a callback in response to a particular event for a

component or for the figure itself.

Utility/helper functions Perform miscellaneous functions not directly associated with an event for
the figure or a component.

Adding Callback Templates to an Existing Code File

When you save the app, GUIDE automatically adds templates for some callbacks to the code file. If
you want to add other callbacks to the file, you can easily do so.

Within GUIDE, you can add a local callback function template to the code in any of the following

ways. Select the component for which you want to add the callback, and then:

* Right-click the mouse button, and from the View callbacks submenu, select the desired callback.

* From View > View Callbacks, select the desired callback.

* Double-click a component to show its properties in the Property Inspector. In the Property
Inspector, click the pencil-and-paper icon % next to the name of the callback you want to install
in the code file.

» For toolbar buttons, in the Toolbar Editor, click the View button next to Clicked Callback (for
Push Tool buttons) or On Callback, or Off Callback (for Toggle Tools).

When you perform any of these actions, GUIDE adds the callback template to the code file, saves it,
and opens it for editing at the callback you just added. If you select a callback that currently exists in
the code file, GUIDE adds no callback, but saves the file and opens it for editing at the callback you
select.

For more information, see “GUIDE-Generated Callback Functions and Property Values” on page 19-
4,

About GUIDE-Generated Callbacks

Callbacks created by GUIDE for components are similar to callbacks created programmatically, with
certain differences.

* GUIDE generates callbacks as function templates within the code file.

GUIDE names callbacks based on the callback type and the component Tag property. For example,
togglebuttonl Callback is such a default callback name. If you change a component Tag,
GUIDE renames all its callbacks in the code file to contain the new tag. You can change the name
of a callback, replace it with another function, or remove it entirely using the Property Inspector.

3-17

3 Howto Create a App with GUIDE

3-18

* GUIDE provides three arguments on page 19-4 to callbacks, always named the same.

* You can append arguments to GUIDE-generated callbacks, but never alter or remove the ones that
GUIDE places there.

* You can rename a GUIDE-generated callback by editing its name or by changing the component
Tag.

* You can delete a callback from a component by clearing it from the Property Inspector; this action
does not remove anything from the code file.

* You can specify the same callback function for multiple components to enable them to share code.

After you delete a component in GUIDE, all callbacks it had remain in the code file. If you are sure
that no other component uses the callbacks, you can then remove the callback code manually. For
details, see “Renaming and Removing GUIDE-Generated Callbacks” on page 19-13.

See Also

Related Examples
. “Write Callbacks in GUIDE” on page 19-2

App Designer

19

App Designer Basics

* “Create and Run a Simple App Using App Designer” on page 4-2
* “GUIDE Migration Strategies” on page 4-5

» “Display Graphics in App Designer” on page 4-12

* “App Designer Preferences” on page 4-17

4 App Designer Basics

Create and Run a Simple App Using App Designer

App Designer provides a tutorial that guides you through the process of creating a simple app
containing a plot and a slider. The slider controls the amplitude of the plotted function. You can
create this app by running the tutorial, or you can follow the tutorial steps listed here.

4 Ul Figure — O *

1000

500

=500

_1[]']0 i i i i i
0 10 20 30 40 50

Amplitude b

0 20 40 60 80 100

Run the Tutorial

To run the tutorial in App Designer, open the App Designer Start Page and expand the Examples:
General section. Then, select Interactive Tutorial.

Tutorial Steps for Creating the App

Perform the following steps in App Designer.

Drag an Axes component from the Component Library onto the canvas.

Drag a Slider component from the Component Library onto the canvas. Place it below the axes,
as in the preceding image.

3 Replace the slider label text. Double-click the label and replace the word Slider with
Amplitude.

4-2

Create and Run a Simple App Using App Designer

0 20 40 &0 &80 100

Above the canvas, click Code View to edit the code. (Notice that you can switch back to edit your
layout by clicking Design View.)

Design WView Code View

In the code view, add a callback function that executes MATLAB commands whenever the user
moves the slider. Right-click app.AmplitudeSlider in the Component Browser. Then select
Callbacks > Add ValueChangedFcn callback in the context menu. App Designer creates a
callback function and places the cursor in the body of that function.

COMPONENT BROWSER

Desig = Code View
~ Q@
v & myApp
= app.UIFigure
app.UlAxes
app. AmplitudeShider
Include component labels in Component Browser
Rename F2
Delete Delete
Add ValueChangedFcn callback | Callbacks k

Add ValueChangingFcn callback | Help on Selection

TS

e R T T R e

Plot the peaks function in the axes. Add this command to the second line of the
AmplitudeSliderValueChanged callback:

plot(app.UIAxes,value*peaks)

Notice that the plot command specifies the target axes (app . ULIAxes) as the first argument.
The target axes is always required when you call the plot command in App Designer.

Change the limits of the y-axis by setting the YLim property of the UIAxes object. Add this
command to the third line of the AmplitudeSliderValueChanged callback:

app.UIAxes.YLim = [-1000 1000];

4-3

4 App Designer Basics

Notice that the command uses dot notation to access the YLim property. Always use the pattern
app.Component.Property to access property values.

8 Click Run & to save and run the app. After saving your changes, your app is available for
running again in App Designer, or by typing its name (without the . mlapp extension) at the
MATLAB command prompt. When you run the app from the command prompt, the file must be in
the current folder or on the MATLAB path.

See Also

Related Examples

. “Manage Code in App Designer Code View” on page 7-2
. “Write Callbacks in App Designer” on page 7-15

. “Display Graphics in App Designer” on page 4-12

4-4

GUIDE Migration Strategies

GUIDE Migration Strategies

In R2019b, MathWorks announced that GUIDE, the original drag-and-drop environment for building
apps in MATLAB, will be removed in a future release. After GUIDE is removed, existing GUIDE apps
(GUIs) will continue to run in MATLAB, and app program files will still be editable if you need to
change the behavior of an app.

To continue editing the layout of an existing GUIDE app and help maintain its compatibility with
future MATLAB releases, you must use one of the suggested migration strategies listed in this table.

App Development Needs Migration Strategy How to Migrate
Occasional editing Export your app to a single Open the app in GUIDE and
MATLAB file to manage your select File > Export to
app layout and code using MATLAB-file. In the GUIDE
MATLAB functions. Removal Options dialog, click
Export.
Ongoing development Migrate your app to App Open the app in GUIDE and
Designer. select File > Migrate to App
Designer. In the GUIDE
Removal Options dialog, click
Migrate.

Export GUIDE App to MATLAB File

Exporting a GUIDE app converts it into a programmatic app by recreating the GUIDE FIG and
program files together in a single MATLAB program file.

Use this option if you plan to:

* Make minor changes to the layout or behavior of your app.
» Develop your app programmatically, not interactively.

To export your app, open it in GUIDE and select File > Export to MATLAB-file, or right-click the
FIG file in the MATLAB Current Folder browser and select Export to MATLAB-file. This brings up
the GUIDE Removal Options dialog. Verify that the correct FIG file is selected and then click Export.
MATLAB creates a program file with export appended to the file name. The new file contains your
original callback code plus auto-generated functions that handle the creation and layout of the app.
An example of these added functions is shown here.

4 App Designer Basics

4-6

FuelEconomy_GUIDEApp_export.m . +

ok Fothbarimeh § & r

359 = vitle ([CarTruck ' - ' CicyHighway]):

360

361

362 % --- Creates and returns a handle to the GUI figure.

3g3 function hl = FuelEconomy GUIDEApp export_LayoutFcn (policy)
1068

1065

1070 % ——- Set application data first then calling the CreateFcn.
1071 function lccal_crea:eEc:thomecc, eventdata, createfcn, appdaca)
1088

1088

1050 % --- Handles defaulr GUIDE GUI creacicn and callback dispactch
1081 function varargout = gui mainfcn({gui_State, wvarargin)

1333

1334 function gui hFigure = local cpenfig(name, singleton, visible)
1357

1358 function result = local isInvokeActiveXCallback(gui State, wvarargin)
ki1

1367 function result = local isInvokeHGCallback(gui State, varargin)
1379 - -

1380

Migrate GUIDE App to App Designer

Migrating your GUIDE app to App Designer allows you to continue developing the layout of your app
interactively. It also allows you to take advantage of features like an enhanced UI component set and
auto-reflow options to make your app responsive to changes in screen size. And it gives you the
ability to create and share your app as a web app (requires MATLAB Compiler™).

The GUIDE to App Designer Migration Tool for MATLAB was first released in R2018a to ease the
conversion process. It is available through the Add-On Explorer in the MATLAB desktop or through
File Exchange on MATLAB Central™.

Starting in R2020a, the migration tool has significant improvements that drastically reduce the time,
and the number of manual code updates, required to get your app running in App Designer. For
details about these enhancements, see “Callback Code” on page 4-7.

Use this option for GUIDE apps that require significant or ongoing feature development.

There are several ways to migrate your app, depending on which environment you begin in.

* Open the GUIDE Removal Options dialog by opening your app in GUIDE and selecting File >
Migrate to App Designer, or right-clicking the FIG file in the MATLAB Current Folder browser
and selecting Migrate to App Designer.

* Ifyou do not already have the GUIDE to App Designer Migration Tool installed, click Install
Support Package. This opens the Add-On Explorer, where you can install the migration tool.
Once you have installed the tool, reopen the GUIDE Removal Options dialog.

* Once you have installed the GUIDE to App Designer Migration Tool, choose the correct FIG file
and then click Migrate. The app migrates and automatically opens in App Designer.

* From App Designer, open any app and go to the Designer tab. In the File section, click Open >
Open GUIDE to App Designer Migration Tool.

https://www.mathworks.com/matlabcentral/fileexchange/66087-guide-to-app-designer-migration-tool-for-matlab

GUIDE Migration Strategies

Features of the Migration Tool

The migration tool helps you convert your apps by reading in a GUIDE FIG file and automatically
generating the App Designer equivalent components and layout in an MLAPP file. Your GUIDE
callback code and other user-defined functions are copied into the MLAPP file. This semi-automated
code conversion also creates a migration report that suggests actions for any manual code updates
that are needed. Some features of the tool are described in this table.

Migration |Description
Tool
Features

File Read in a GUIDE FIG file and associated code and then generate an App Designer
Conversion |MLAPP file. The App Designer file name takes the form guideFileName App.mlapp.

Component |Convert components and property configurations to App Designer equivalents, and
sand App |preserve the layout of the app.

Layout
GUIDE App: App Designer App:
4 Mass C4lculator — O b 4 Mass Calculator — O
Measures Unitz Measuras Units:
Density (1) 0| Ibicu.in @ English Unit System * Density(D): 0| Ibicuin #) Engligh Unit System
() 5.1 Unit System . 2.1 Unit System
Volumey): 0| cuin Vialume(W): 0| cuwin
Mass(DY): 0 b Calculate Reset Mass(D*V): 3] Calculatd Reset

Callback Retain a copy of the GUIDE callback code and user-defined functions in the MLAPP file.
Code

Tutorial Step through the changes made to your migrated app.

Migration |Summarize the actions successfully completed by the migration tool. List any
Report limitations or unsupported functionality, specific to your app, with suggested actions if
available.

Callback Code

In order to make your GUIDE-style callback code compatible with the App Designer Ul components in
your app, the migration tool uses a function called convertToGUIDECallbackArguments. This
function converts App Designer callback arguments into the GUIDE-style callback arguments that
your code requires. The convertToGUIDECallbackArguments function is added to the beginning
of each migrated callback function. It takes the App Designer callback arguments app and event and
returns the GUIDE-style callback arguments hObject, eventdata, and handles. For example:

4 App Designer Basics

Bd R B RS R RS
HE D e @ & oo
moud a1 dhoun

4-8

% Button pushed function: showcode
function showcode Callback{app, event)
% Create GUIDE-style callback args - Added by Migration Toeol
[MObject, eventdata, handles] = convertToGUIDECallbackArguments(app, event);

hobject handle to showcode (see GCBO)

eventdata reserved - to be defined in a future wversion of MATLAB
handles structure with handles and user data (see GUIDATA)
open(handles.scriptPath);

&2 58 8

ena

hObject is the handle of the object whose callback is executing. For components from your GUIDE
app that were UIControl or ButtonGroup objects, hObject is a handle to a
UIControlPropertiesConverter or ButtonGroupPropertiesConverter object. These objects
are created to make your GUIDE-style code work in your App Designer callback functions.

eventdata is usually empty, but can be a structure containing specific information about the
callback event.

handles is a structure that contains the migrated child components of the UI figure that have a
'Tag' property value set. Child components that were UIControl objects in your GUIDE app are
UIControlPropertiesConverter objects in the migrated app. Similarly, child ButtonGroup
objects are ButtonGroupPropertiesConverter objects in the migrated app.

The UIControlPropertiesConverter and ButtonGroupPropertiesConverter objects act like
adapters between the GUIDE-style code and the App Designer components and callbacks. A
UIControlPropertiesConverter object is created for each component in your GUIDE app that
was a ULIControl object. These converter objects are associated with an App Designer Ul component
in your migrated app. The converter object has the same properties and values as the original
UIControl from your GUIDE app, but it applies them to its associated App Designer Ul component.

Similarly, for ButtonGroup objects from GUIDE, a ButtonGroupPropertiesConverter object is
created in App Designer. This object makes it possible to set the SelectedObject property to a
UIControlPropertiesConverter object so that button group SelectionChangedFcn callback
logic will function.

Special Considerations

There are some circumstances that require you to take extra steps before or after you migrate your
app. This table lists common scenarios and coding patterns that require extra steps or manual code
updates. This is not intended to be a comprehensive list.

GUIDE App Feature Description Suggested Actions

Multiwindow apps (that is, two
or more apps that share data)

Multiwindow apps require each
app to be migrated separately.
Migrated app file names are
appended with App. Calls to
these apps from other apps
must be updated.

Migrate each app separately. In
the calling app, update the
name of the app that is being
called to the new file name.

GUIDE Migration Strategies

GUIDE App Feature

Description

Suggested Actions

Radio buttons and radio button
callbacks

The migration tool does not
migrate radio buttons that are
not parented to a radio button
group, or callback functions for
individual radio buttons.

Create a button group in App
Designer and add radio buttons
to it. To execute behavior when
radio button selection is
changed, create a
SelectionChangedFcn
callback function for the button
group. For more information,
see uiradiobutton and
ButtonGroup Properties.

gco, movie, uistack, and clf
with the 'reset' argument

Calling these functions in App
Designer is not supported.

Determine if this functionality is
critical to your app before
migrating. There is no
workaround in App Designer.

findobj, findall, and gcbo

Using findobj, findall, or
gcbo to reference components
and set properties can error.
UIControl objects are
migrated to the equivalent App
Designer Ul component. To
access and set properties on
these migrated components, you
must set it on the
UIControlPropertiesConve
rter objects. Or, you can
update your code to use its
associated App Designer
component, properties, and
values.

Reference components using
the handles structure instead,
or update your code to use the
associated App Designer
component, properties, and
values.

nargin and nargchk

Helper functions are migrated
to app methods and have app as
an additional input argument.
This can cause incorrect
nargin or nargchk logic.

Increment check values by 1.

4-9

4 App Designer Basics

4-10

GUIDE App Feature

Description

Suggested Actions

OutputFcn(varargout) and
Figure output

There is no equivalent
functionality in App Designer.

When you instantiate a migrated
App Designer app, the output is
always the app object, not the
Figure object.

If your OutputFcn function
includes initialization code that
is critical to your app, then add
it to the end of the OpeningFcn
instead.

If your OutputFcn function
specifies output to be assigned
to the workspace when you
instantiate the app, such as the
Figure object, then you need to
create a function that
instantiates the app. For
example:

function out = MyGUIDEApp(va
app = MyMigratedApp(vara
out app.UIFigure;

end

If your GUIDE app integrates third-party components using functions like actxcontrol, see
Recommendations for MATLAB Apps Using Java and ActiveX.

Aids for Adding New Features or Fully Adopting App Designer Code Style

App Designer and GUIDE have different code structures, callback syntaxes, and techniques for
accessing Ul components and sharing data. Understanding these differences is useful if you plan to
add new App Designer features to your migrated app or want to update it to use App Designer code
style and conventions. This table summarizes some of these differences.

rargin)
rgin{:});

Difference GUIDE App Designer More
Information
Using Figures |GUIDE calls the figure App Designer calls the “Display
and Graphics function to create the app uifigure function to create Graphics in App
window. the app window. Designer” on
page 4-12
GUIDE calls the axes function |App Designer calls the uiaxes
to create axes for displaying function to create axes for
plots. displaying plots.
All MATLAB graphics functions |Most MATLAB graphics
are supported. There is no need |functions are supported.
to specify the target axes.
Using GUIDE creates most App Designer creates each Ul | “App Building
Components components with the component with its own Components”
uicontrol function. Fewer dedicated function. More on page 5-2
components are available. components are available,
including Tree, Gauge,
TabGroup, and DatePicker.

https://www.mathworks.com/products/matlab/app-designer/java-swing-alternatives.html

GUIDE Migration Strategies

Difference GUIDE App Designer More
Information
Accessing GUIDE uses set and get to App Designer supports set and |“Write
Component access component properties, |get, but encourages the use of |Callbacks in
Properties and uses handles to specify a |dot notation to access App Designer”
component. component properties, and uses |on page 7-15
app to specify a component.
For example,
name = For example,
get(handles.Fig, 'Name') |name = app.UIFigure.Name
Managing App |The code is defined as a main |The code is defined as a “Manage Code
Code function that can call local MATLAB class. Only callbacks, |in App Designer
functions. All code is editable. |helper functions, and custom Code View” on
properties are editable. page 7-2
Writing Required callback input Required callback input “Write
Callbacks arguments are handles, arguments are app and event. |Callbacks in
hObject, and eventdata. App Designer”
For example, on page 7-15
For example, myCallback(app,event)
myCallback(hObject, evend
ata,handles)
Sharing Data |To store and share data between |To store and share data between | “Share Data
callbacks and functions, use the |callbacks and functions, use Within App
UserData property, the custom properties to create Designer Apps”
handles structure, or the variables. on page 7-23

guidata, setappdata, or
getappdata function.

For example,
handles.currSelection =
selection;
guidata(hObject,handles)

’

For example,
app.currSelection =
selection

See Also

Related Examples
. “Create and Run a Simple App Using App Designer” on page 4-2

. “Display Graphics in App Designer” on page 4-12

. “Ways to Build Apps” on page 1-2

4-11

4 App Designer Basics

Display Graphics in App Designer

4-12

In this section...

“App Designer Graphics Overview” on page 4-12

“Display Graphics on Existing Axes” on page 4-12

“Display Graphics in Container” on page 4-13

“Create Axes Programmatically” on page 4-13

“Use Functions With No Target Argument” on page 4-14

“Use Functions That Don't Support Automatic Resizing” on page 4-14
“Unsupported Functionality” on page 4-15

App Designer Graphics Overview

Many of the graphics functions in MATLAB (and MATLAB toolboxes) have an argument for specifying
the target axes or parent object. This argument is optional in most contexts, but when you call these
functions in App Designer, you must specify this argument. The reason is that, in most contexts,
MATLAB defaults to using the gcf or gca functions to get the target object for an operation. But
these functions depend on the HandleVisibility property of the parent figure being 'on', and the
HandleVisibility property of App Designer figures is set to 'off' by default. This means that
gcf and gca do not work as normal. As a result, omitting the argument for a target axes or parent
object can produce unexpected results.

Depending on the graphics function you call, you might need to specify:

* A UIAxes component on the canvas
* A parent container in your app

* An axes component that you create programmatically in your app code

There are a number of ways to specify the target component for a graphics function. Some examples
of the most common syntaxes are given below. To determine the correct target and syntax in your
context, see the documentation for the specific graphics function you are using.

Display Graphics on Existing Axes

The most common way to display graphics in App Designer is to specify a UIAxes object on the App
Designer canvas as the graphics function target. When you drag an axes component from the
Component Library onto the canvas, this creates a UIAxes object in your app. The default name for
an App Designer axes object is app . UIAxes. To determine or change the name of a specific axes on
your canvas, select the axes component. Its name is listed and can be edited in the Component
Browser

Specify Axes as First Argument

Many graphics functions have an optional first input argument to specify the target axes object. For
example, both the plot function and the hold function take a target axes object in this way. To plot
two lines on a set of axes on the canvas, specify the name of the axes object as the first argument to
each function you call.

Display Graphics in App Designer

plot(app.UIAxes,[1 2 3 4],'-r');
hold(app.UIAxes);
plot(app.UIAxes,[10 9 4 7],'--b");

Specify Axes as Name-Value Argument

Some graphics functions require the target axes object to be specified as a name-value argument. For
example, when you call the imshow and triplot functions, specify the axes object to display on
using the 'Parent' name-value argument. This code displays an image on an existing set of axes on
your canvas:

imshow('peppers.png', 'Parent',app.UIAxes);

Display Graphics in Container

Some graphics functions display in a container component, such as a figure, panel, or grid layout,
instead of an axes object. For example, the heatmap function has an optional first argument for
specifying the container that the chart will display in.

Every App Designer app has a figure object, by default named app.UIFigure, that is a container for
the components that make up the main app window. Specify app.UIFigure as the parent container
argument to display graphics in the main app window. For example, to create a heat map in your app,
use this syntax:

h = heatmap(app.UIFigure,rand(10));

To further organize and compartmentalize graphics that take a parent container input argument,
drag a container component such as a panel, tab, or grid layout from the Component Library onto
the canvas. Determine the name of the component by selecting it and viewing its name in the
Component Browser. You can then specify this container as the parent when you call the graphics
function.

Other commonly used graphics functions that take a parent container as input include annotation,
geobubble, parallelplot, scatterhistogram, stackedplot, and wordcloud.

Create Axes Programmatically

Some graphics functions plot data on specialized axes. For example, functions that plot polar data
must do so on a PolarAxes object. Unlike UIAxes objects, which you can add to your app from the
Component Library, you must add specialized axes to your app programmatically in your code. To
create an axes object programmatically, create a StartupFcn callback for your app. Within it, call
the appropriate graphics function and specify a parent container in your app as the target.

Plot on Polar Axes

Functions such as polarplot, polarhistogram, and polarscatter take a polar axes object as a
target. Create a polar axes programmatically by calling the polaraxes function. For example, to plot
a polar equation in a panel, first drag a panel component from the Component Library onto your
canvas. In the code for your app, create the polar axes object by calling the polaraxes function and
specifying the panel as the parent container. Then, plot your equation with the polarplot function,
specifying the polar axes as the target axes.

theta = 0:0.01:2*pi;
rho = sin(2*theta).*cos(2*theta);

4-13

4 App Designer Basics

4-14

pax = polaraxes(app.Panel);
polarplot(pax,theta, rho)

Plot on Geographic Axes

Functions such as geoplot, geoscatter, and geodensityplot take a geographic axes object as a
target. Create a geographic axes programmatically by calling the geoaxes function. For example, to
plot geographic data in a panel, use the following code:

latSeattle = 47 + 37/60;
lonSeattle = -(122 + 20/60);

gx = geoaxes(app.Panel);
geoplot(gx,latSeattle,lonSeattle)

Create Tiled Chart Layout

To tile multiple charts using the tiledlayout function, create a tiled chart layout in a panel and
programmatically create axes in it using the nexttile function. Return the axes object from the
nexttile function and use it to specify the axes for your charts or plots.

t = tiledlayout(app.Panel,2,1);
[X,Y,Z] = peaks(20)

% Tile 1
axl = nexttile(t);
surf(axl1,X,Y,Z)

% Tile 2
ax2 = nexttile(t);
contour(ax2,X,Y,Z)

Use Functions With No Target Argument

Some graphics functions, such as ginput and gtext, do not have an argument for specifying a
target. As a result, you must set the HandleVisibility property of the App Designer figure to
"callback' or 'on' before calling these functions. After you call these functions, you can set the
HandleVisibility property back to 'off'. For example, this code shows how to define a callback
that allows you to identify the coordinates of two points using the ginput function.

function pushButtonCallback(app,event)
app.UIFigure.HandleVisibility = 'callback';
ginput(2)
app.UIFigure.HandleVisibility = 'off"';

end

Use Functions That Don't Support Automatic Resizing

App Designer figures are resizable by default. This means that when you run an app and resize the
figure window, components in the figure are automatically resized and repositioned to fit. However,
some graphics functions do not support automatic resizing. To use these functions in App Designer,
create a panel in which to display the output of the function and set the AutoResizeChildren
property of the panel to 'off'. You can set this property in the Inspector tab of the Component
Browser or in your code.

For example, the subplot function does not support automatic resizing. To use this function in your
app:

Display Graphics in App Designer

1 Drag a panel component from the Component Library onto your canvas.
2 Setthe AutoResizeChildren property of the panel to 'off'.

3 Specify the panel as the parent container using the 'Parent' name-value argument when you
call subplot. Also, specify an output argument to store the axes.

4 Call the plotting function with the axes as the first input argument.

app.Panel.AutoResizeChildren = 'off';
axl = subplot(1,2,1, 'Parent',app.Panel);
ax2 = subplot(1l,2,2, 'Parent',app.Panel);
plot(axl,[1 2 3 4])

plot(ax2,[10 9 4 7])

Other commonly used functions that do not support automatic resizing include pareto and
plotmatrix.

For more information about managing resize behavior, see “Alternatives to Default Auto-Resize
Behaviors” on page 6-11.

Unsupported Functionality

As of R2021a, some graphics functionality is not supported in App Designer. This table lists the
unsupported functionality that is most relevant to app building workflows.

Category Not Supported

Animation The movie function is not supported.

Retrieving and These functions are not supported: hgexport, hgload, hgsave, save, load,
Saving Data savefig, openfig, and saveas.

Instead of the saveas function, use the exportapp function to save the content
of an app window. To save plots in an app, use the exportgraphics or
copygraphics functions.

Figures created programmatically with uifigure do support the save, load,
savefig, and openfig functions.

Utilities The c1f function with the 'reset' argument and the print function are not
supported.

Instead of the print function, use the exportapp function to save the content
of an app window. To save plots in an app, use the exportgraphics or
copygraphics functions.

Web Apps If you are using App Designer to create a deployed web app (requires MATLAB
Compiler), additional graphics limitations apply.

For more information, see “Limitations and Unsupported Functionality”
(MATLAB Compiler).

See Also
UI Figure | UlAxes

4-15

4 App Designer Basics

4-16

More About

“Create Polar Axes Programmatically in an App” on page 8-7

“App Building Components” on page 5-2

“Add UI Components to App Designer Programmatically” on page 5-20
“Manage Resizable Apps in App Designer” on page 6-11

App Designer Preferences

App Designer Preferences

You can set App Designer preferences in the MATLAB Preferences dialog box. To open the dialog box,
click & Preferences in the MATLAB Toolstrip. Then, select App Designer in the left pane.

4\ Preferences

4 MATLAB ~
..lﬂldd-Ons
A
Code Analyzer

Colors
Pregramming Tools
Command History
Command Window
Comparison
Current Folder
Editor/Debugger
Display
Tab
Language
Code Folding
Backup Files
Autoformatting
Autoceding
Figure Copy Template
Fonts
General
GUIDE

- d >
MATLAE App Designer Preferences
Canvas
[] Show grid with interval: 10 % | pixels Show alignment hints
Snap to grid (] Show resizing hints
Editor
Fontsize: | 14/3] pixels Enable app coding alerts
Read-only background: |[Jill= Restore Default Color
Uncheck "Use systemn colors” in Colors preferences to edit Read-only background
Component Browser
[Include compaonent labels in Component Browser
Most recently used file list
Murnber of entries: 8
Automatic file changes
[] Save changes upon clicking away from an app
Cancel Apply Help

This table describes each option in the right pane.

Option

Description

Show grid with interval

When selected, App Designer overlays a grid onto
the canvas as an alignment aide. You can change
the grid spacing to a specific number of pixels.
The default spacing is 10.

Snap to grid

When selected, the upper left corner of a
component always snaps to the intersection of
two grid lines whenever you resize or move the
component on the canvas.

Show alignment hints

When selected, App Designer displays alignment
hints as you resize or move a component on the
canvas.

Show resizing hints

When selected, App Designer displays the size of
a component as you resize it on the canvas.

4-17

4 App Designer Basics

4-18

Option

Description

Font Size

You can change the font size that displays in App
Designer Code View. The font size can range
from 14-48 pixels. The default font size is 14
pixels.

Enable app coding alerts

When selected, App Designer flags coding
problems in the editor as you write code.

Read-only background

You can change the background color of the
uneditable code sections in App Designer Code
View. To change the background color, clear the
Use system colors check box in the MATLAB
Colors preferences. Then, select a new color from
the color drop-down in the App Designer
preferences. The default background color is

gray.

Include component labels in Component
Browser

When selected, labels included with components
(such as edit fields) appear as separate items in
the Component Browser. When this item is not
selected, those labels do not appear in the
Component Browser.

Number of entries (most recently used file
list)

This number specifies how many of the most
recently accessed apps appear under the Recent
Files section of the Open menu in the Designer
tab.

Automatic File Changes

When selected, App Designer automatically saves
changes to an app when you click away from it to
switch between apps or to bring another window
into focus. If an app has not already been saved
at least once, autosave has no effect.

To customize the App Designer canvas and Component Browser settings programmatically, use

matlab.appdesigner Settings.
See Also

Related Examples

. “Lay Out Apps in App Designer Design View” on page 6-2

. “Manage Code in App Designer Code View” on page 7-2

Component Choices and Customizations

* “App Building Components” on page 5-2

» “Table Array Data Types in App Designer Apps” on page 5-15

* “Add UI Components to App Designer Programmatically” on page 5-20

* “Create HTML File That Can Trigger or Respond to Data Changes” on page 5-23

5 Component Choices and Customizations

App Building Components

5-2

App Designer and Ul figures support a large set of components for designing modern, full-featured
applications. The tables below list the components that are available.

Common Components — Include components that respond to interactions, such as buttons,
sliders, drop-down lists, and trees.

Axes — Include axes to create plots for data visualization and exploration.

Containers and Figure Tools — Include panels and tabs for grouping components, as well as menu
bars.

Instrumentation Components — Include gauges and lamps for visualizing status, as well as knobs
and switches for selecting input parameters.

Extensible Components — Include custom UI components that you author. Interface with third-
party libraries to display content like widgets or data visualizations.

Toolbox Components — Include toolbox authored UI components. Requires additional toolbox
license and installation.

All components are available programmatically. Most Ul components are also available in the App
Designer Component Library for you to drag and drop onto the canvas. To add components to an
App Designer app that are not available in the Component Library, or that you want to add
dynamically to the running app, see “Add UI Components to App Designer Programmatically” on page
5-20.

When calling graphics functions in App Designer, the workflow is slightly different than you typically
use at the MATLAB command line. For more information about how to call graphics functions in App
Designer, see “Display Graphics in App Designer” on page 4-12.

Common Components

Component Example
Information

Button

alll Plot Data

CheckBox

Femove Outliers

Add Trendling

App Building Components

CheckBoxTree
Properties v [] Sedimentary
TreeNode
b] lgneous
- (W] Metamorphic
Slate
_Isate [y
Marble
Gneiss
DatePicker Properties
mm.'ddfy'_.'w| -]
[Juty v|[2018 v |[« &[]
Su Mo Tu We Tn Fr Sa|
N 3 4 6 B
8 9 10 1 1 13 14
5 18 w7 18 19 20 A
22| 23 M 25 B 27T | 2B
29 30 3 4
5 1
DropDown
Editable Drop Down | Option 1] | v |
Drop Down Fed L4
Fed
Green .
Elue b
NumericEditField
Sample Size
EditField
Mame |CIE1.re |

5-3

5 Component Choices and Customizations

Component
Information

Example

Hyperlink Properties

fﬁtthks home page

https-/fwww. mathworks_com

Image Properties

Label
Select an Option
ListBox
Fed
Green
Blue
ButtonGroup
RadioButton Select a Color
Red
®) Green
Elue
Slider e
Spinner

E‘
-)

App Building Components

StateButton
Table oo+ e [snoe | |
= i
.
TextArea
This sample might
be an outlier.
ButtonGroup
ToggleButton Water Temperature (C)
Tree
TreeNode ~ [Samples
~ [0 Cape Ann
Water Cuality
Air Quuality
v B Nantucket

5-5

5 Component Choices and Customizations

5-6

Axes

UIAxes

Axes Properties

This object can be
added
programmatically
only.

This object can be .

added _ 0.08

programmatically

On].y. 0.06
0.04
0.02

0
GeographicAxes
Properties

40°N

30°N

App Building Components

PolarAxes Properties
This object can be
added
programmatically
only.

Containers and Figure Tools

GridLayout Properties

| Configure grid layout i i :
A H S — A a
Fo====mme== q pTTEsEEEEm== q pTTEsEEEEm== A
:. f ——————— I ——————— ﬁ
Panel
Data

5-7

5 Component Choices and Customizations

Container Example
Information
TabGroup
Tab Data | Plois
Menu File Edit Find Project
Open
Save I}
Export
ContextMenu
Properties cl:-*rT-',-"_\-"_\-"_\-'| -
Change Format
Restore Defaults
Toolbar Properties _—
PushTool Properties 4| UlFigure - = X
ToggleTool Properties || = =

(i
I3

App Building Components

Dialogs and Notifications

uialert
This object can be
added

This object can be
added

programmatically
only. Invalid File

o File not found
uiconfirm

This object can be
added
programmatically
only.

programmatically
only. Confirm Save
9 Saving these changes will overwrite previous changes.
Overwite Canecal
uiprogressdlg

Please Wait

Loading your data

5-9

5 Component Choices and Customizations

uisetcolor
This object can be Color hd
added
programmatically Standard Colors
only. - - - . - - -
Recent Colors
Preview
OK | | Cancel
uigetfile b Saloct Fie 1o Bpen %
This object can be o v o [B+ Nk T |G e 2
added Orqanize = Maw Sokder - 8
programmatically v i Corumssts I Duserodfid | Mg s
On]-y 4 ey P i e 1 m VEAEDOW KTV PN MUATLAR Code
Myloda " st LEIPM RATLAE Code
e o | +| [pm) i
o
ulputflle b Sabect Fiteto Wien =
This object can be # o v % [Docmanes v Maytode TE | i i o 5
added Oegunce = Hlaw Solder - 8
programmatically o [Cocomemty & hams Doemsdiet Tye i
My Fles 0 1m TR EIF P MATLAR Cocle i3
Only bariode B mbumrrﬂd-m! L g ol P MATLAE Cods Vg
Fale Aama .In.n.ndm 'r.
e | v
A Vot Fakdrs Cancal

5-10

App Building Components

uigetdir 4 Select Faldes ba Dpen *
This object can be 4 Gt ThPC - DSDGKICH w & Saarch Wind p
added Coprnize = Piow booen - @
programmatically . 210 Object: - & Type on
On].y. ¢ I Daktap Progosm File Fila Tioldar
» % Documents Frogeam Files (eb) Fiby foddar
o Downlosds et Fau Apdades
:I j‘ Wi ‘Wendowt Vdu fokdm
| 5 B Pk
» [Yoo
b e DSDMEICH i
L *
Folder | |
[(Seeitoider | | concel |
uiopen 4 apen X
This object can be P e ve——v s pr——r P
added aadirr Mookl -9
programmatically m—— & Mame Owemodins Type =
only. B 0 Objerts ®° pnaenane] 1ILPHIE I PM BABTLAB Cede
B Desticg £ i 5 LIPLA MAATLAR Cede
| Documants
& Downtosd
2 W
= Fehaes
w o »
Fie pamne: | | ABBARTLAR des [b sad,
[G [| Conce
uisave A ot Worspace Varabies #
This object can be 2 [l = Dosuments + MhCoda vt | SaarchibCode s
added Owanae = Mew lokie L ¢
programmatically —— A ame Dmemosfed Type e
Only. I 30 Objeens i serms misch yoon earch
B Desidop
| Doumants
& Downleads
B Mesic
W L
—— -

Save o fype l-lI-T-ﬂBf.ml_ﬂ

Hede Folden

5-11

5 Component Choices and Customizations

Instrumentation
Component Example
Information
Gauge
R e N
;/ 40 ;{J LN
20 80
N 0 100)/
NinetyDegreeGauge
LinearGauge
0 20 40 BP 20100
SemicircularGauge
T T
r 40 60 -,
£720 0]80Ty
Lo / 100 -
Knob
40 30 g
30 70
20 | | a0
10 Nl 90
1] 100
DiscreteKnob
Low Medium
L] L]
Off — | = High

5-12

App Building Components

Lamp
Switch
or () on
RockerSwitch
on
iii
Off
ToggleSwitch
on
U
Off

Extensible Components

matlab.ui.compone|: —
ntcontainer.Compo| |\
nentContainer 3
Class

matlab.graphics.c
hartcontainer.Cha
rtContainer Class

5-13

5 Component Choices and Customizations

Component Example
Information

HTML Properties]
Use the uihtml function to:

« Display HTML markup

« Embed HTML, JavaScriptZ,
or CS8S content

Check schedule and
conditions

Menui Menu?

)
Current

Conditions
Last Updated, May 28, 2019 ¥

Toolbox Components

Apps created in App Designer or with the uifigure function support Aerospace Toolbox
components. For more information, see “Flight Instruments” (Aerospace Toolbox). To use toolbox
components, a valid license and installation of the associated toolbox is required.

See Also

Related Examples

. “Ways to Build Apps” on page 1-2

. “Display Graphics in App Designer” on page 4-12

. “Create and Run a Simple App Using App Designer” on page 4-2

. “Add UI Components to App Designer Programmatically” on page 5-20
. “Create and Run a Simple figure-Based App” on page 2-2

5-14

Table Array Data Types in App Designer Apps

Table Array Data Types in App Designer Apps

Table arrays are useful for storing tabular data as MATLAB variables. For example, you can call the
readtable function to create a table array from a spreadsheet.

Table UI components, by contrast, are user interface components that display tabular data in apps.
Starting in R2018a, the types of data you can display in a Table UI component include table arrays.
Only App Designer apps and figures created with the uifigure function support table arrays.

When you display table array data in apps, you can take advantage of the interactive features for
certain data types. And unlike other types of arrays that Table Ul components support, table array
data does not display according to the ColumnFormat property of the Table Ul component.

Logical Data

In a Table Ul component, logical values display as check boxes. true values are checked, whereas
false values are unchecked. When the ColumnEditable property of the Table Ul component is
true, the user can select and clear the check boxes in the app.

fig = uifigure;

tdata = table([true; true; false]);
uit = uitable(fig, 'Data’,tdata);
uit.Position(3) = 130;

uit.RowName = 'numbered';

Categorical Data

categorical values can appear as drop-down lists or as text. The categories appear in drop-down
lists when the ColumnEditable property of the Table UI component is true. Otherwise, the
categories display as text without a drop-down list.

fig = uifiqgure;

cnames = categorical({'Blue’;'Red'},{'Blue’','Red'});

w = [400; 700];

tdata = table(cnames,w, 'VariableNames',{'Color', '"Wavelength'});
uit = uitable(fig, 'Data’,tdata, 'ColumnEditable’,true);

Color Wavelength

Elue 400
Red |~ | 700
Elue

Fed [|

5-15

5 Component Choices and Customizations

5-16

If the categorical array is not protected, users can add new categories in the running app by
typing in the cell.

Datetime Data

datetime values display according to the Format property of the corresponding table variable (a
datetime array).

fig = uifiqgure;

dates = datetime([2016,01,17; 2017,01,20], 'Format', '"MM/dd/uuuu');

m= [10; 9];

tdata = table(dates,m, 'VariableNames', {'Date', 'Measurement'});

uit = uitable(fig, 'Data',tdata);

Date Measurement
0172016 10
012002017 9

To change the format, use dot notation to set the Format property of the table variable. Then, replace
the data in the Table UI component.

tdata.Date.Format = 'dd/MM/uuuu’;
uit.Data = tdata;

1702016 10
2000172017 9

When the ColumnEditable property of the Table UI component is true, users can change date
values in the app. When the column is editable, the app expects input values that conform to the
Format property of the datetime array. If the user enters an invalid date, the value displayed in the
table is NaT.

Duration Data

duration values display according to the Format property of the corresponding table variable (a
duration array).

fig = uifigure;

mtime = duration([0;0],[1;1],[20;30]);

dist = [10.51; 10.92];

tdata = table(mtime,dist, 'VariableNames',{'Time', 'Distance'});
uit = uitable(fig, 'Data’',tdata);

[
[}
w
i
o
m

00:01:20 10.5100
00:01:30 10.9200

Table Array Data Types in App Designer Apps

To change the format, use dot notation to set the Format property of the table variable.

tdata.Time.Format = 's';
uit.Data = tdata;

ime Distance
80 sec 10.5100
90 sec 10.9200

Cells containing duration values are not editable in the running app, even when ColumnEditable
of the Table Ul component is true.

Nonscalar Data

Nonscalar values display in the app the same way as they display in the Command Window. For
example, this table array contains 3-D arrays and struct arrays.

fig = uifigure;

arr = {rand(3,3,3); rand(3,3,3)};

s = {struct; struct};

tdata = table(arr,s, 'VariableNames', {'Array', 'Structure'});
uit = uitable(fig, 'Data’',tdata);

Array Structure
3=3=3 double | 1=1 struct
3=3=3 double | 1=1 struct

A multicolumn table array variable displays as a combined column in the app, just as it does in the
Command Window. For example, the RGB variable in this table array is a 3-by-3 array.

n=1[1;2;3];
rgbs = [128 122 16; 0 66 155; 255 0 0];
tdata = table(n, rgbs, 'VariableNames',{'ROI', 'RGB'})

tdata =
3x2 table
ROI RGB
1 128 122 16
2 0 66 155
3 255 0 0

The Table Ul component provides a similar presentation. Selecting an item in the RGB column
selects all the subcolumns in that row. The values in the subcolumns are not editable in the running
app, even when ColumnEditable property of the Table Ul component is true.

fig
uit

uifigure;
uitable(fig, 'Data’',tdata);

5-17

5 Component Choices and Customizations

5-18

RO RGE
1 123 122 16
2 0 66 155
3 255 0 a

Missing Data Values

Missing values display as indicators according to the data type:

» Missing strings display as <missing>.

* Undefined categorical values display as <undefined>.

* Invalid or undefined numbers or duration values display as NaN.
* Invalid or undefined datetime values display as NaT.

If the ColumnEditable property of the Table Ul component is true, then the user can correct the
values in the running app.

fig = uifiqgure;

sz = categorical([1; 3; 4; 21,1:3,{'Large', 'Medium', 'Small'});
num = [NaN; 10; 12; 15];

tdata = table(sz,num, 'VariableNames',{'Size"', 'Number'});

uit = uitable(fig, 'Data',tdata, 'ColumnEditable',true);

SIZE Number

Large ml
Small 10
=undefined= 12
Medium 15

Example: App that Displays a Table Array

This app shows how to display a Table Ul component in an app that uses table array data. The table
array contains numeric, logical, categorical, and multicolumn variables.

The StartupFcn callback loads a spreadsheet into a table array. Then a subset of the data displays
and is plotted in the app. One plot displays the original table data. The other plot initially shows the
same table data, and then updates when the user edits a value or sorts a column in the Table Ul
component.

Table Array Data Types in App Designer Apps

4| Blood Pressure Analyisis — O >
_ Original Data = _ Updated Data

@) D - 3 o

E] I,‘l o = / i -II'\ -

g gl:l I 'II \ | |II I 'I\ $ gl:l I / |I II ||

a 2 A / - o a

-g a0 |I " ll-l IIlI IIII -g 20 II" !)

ool o [e B .

= . o—a | m = !

g ¢ / i | h II| S\"_\J o (,I/N’

=70t ,:'I) £ 70t M

= = C

s s s s s n

= 25 30 a5 40 45 50 25 30 35 40 45 50

Age Age
Age Blood Pressure Smoker Health Status ti

25 127 74] Poaor % =
27 123 79 Fair
28 15 78] Excellent
| 118 86] Excellent
32 124 95 Excellent
33 130 88 Good
36 114 79] Good -

See Also
Table (App Designer) | uitable

Related Examples
. “Write Callbacks in App Designer” on page 7-15
. “Reuse Code Using Helper Functions” on page 7-20

5-19

5 Component Choices and Customizations

Add Ul Components to App Designer Programmatically

5-20

Most Ul components are available in the App Designer Component Library for you to drag and drop
onto the canvas. Occasionally, you might need to add components programmatically in Code View.
Here are a few common situations:

* Creating components that are not available in the Component Library. For example, an app that
displays a dialog box must call the appropriate function to display the dialog box.
* Creating components dynamically according to run-time conditions.

When you add UI components programmatically, you must call the appropriate function to create the
component, assign a callback to the component, and then write the callback as a helper function.

Create the Component and Assign the Callback

Call the function that creates the component from within an existing callback (for a list of Ul
component functions, see “uifigure-Based Apps”). The StartupFcn callback is a good place to create
components because that callback runs when the app starts up. In other cases, you might create
components within a different callback function. For example, if you want to display a dialog box
when the user presses a button, call the dialog box function from within the button's callback
function.

When you call a function to create a component, specify the figure or one of its child containers as
the parent object. For example, this command creates a button and specifies the figure as the parent
object. In this case, the figure has the default name that App Designer assigns (app.UIFigure).

b = uibutton(app.UIFigure);

Next, specify the component's callback property as a function handle of the form
@app.callbackname. For example, this command sets the ButtonPushedFcn property of button b
to a callback function named mybuttonpress.

b.ButtonPushedFcn = @app.mybuttonpress;

Write the Callback

Write the callback function for the component as a private helper function. The function must have
app, src, and event as the first three arguments. Here is an example of a callback written as a
private helper function.

methods (Access = private)
function mybuttonpress(app,src,event)
disp('Have a nice day!');
end

end

To write a callback that accepts additional input arguments, specify the additional arguments after
the first three. For example, this callback has accepts two additional inputs, x and y:

methods (Access = private)

function addxy(app,src,event,x,y)

Add Ul Components to App Designer Programmatically

disp(x + y);
end

end

To assign this callback to a component, specify the component's callback property as cell array. The
first element in the cell array must be the function handle. Subsequent elements must be the
additional input values. For example:

b.ButtonPushedFcn = {@app.addxy,10,20};

Example: Confirmation Dialog Box with a Close Function

This app shows how to display a confirmation dialog box that executes a callback when the dialog box
closes.

When the user clicks the window's close button (X), a dialog box displays to confirm that the user
wants to close the app. When the user dismisses the dialog box, the CloseFcn callback executes.

& Plet Random Points - O b4

Confirm Close

9 Are you sure you want to close?

Example: App that Populates Tree Nodes Based on a Data File

This app shows how to dynamically add tree nodes at run time. The three hospital nodes exist in the
tree before the app runs. However at run time, the app adds several child nodes under each hospital
name. The number of child nodes, and the labels on the child nodes are determined by the contents of
the patients.x1ls spreadsheet.

5-21

5 Component Choices and Customizations

When the user clicks a patient name in the tree, the Patient Information panel displays data such
as age, gender, and health status. The app stores changes to the data in a table array.

4 Patient Medical Survey -] *
Select Patient by Location Patient Information
= County General Hospital Demographics
| Stewart
Rarmiraz Mame | Stewar
Hughes
Diaz Age | 40
v 5t Mary's Medical Center Gender | Male -
» VA Hospital
Self-Assessment
Health Status Foaor -
| Smoker
See Also
More About

. “Write Callbacks in App Designer” on page 7-15
. “Reuse Code Using Helper Functions” on page 7-20

5-22

Create HTML File That Can Trigger or Respond to Data Changes

Create HTML File That Can Trigger or Respond to Data Changes

You can include third-party visualizations or widgets in your app by creating an HTML UI component
in it that displays HTML, JavaScript, or CSS content from an HTML file. When you add an HTML UI
component to your app, to enable the component to set data or respond to data changes between
MATLAB and JavaScript, include a setup function in your HTML file. Within the setup function you
can connect the HTML content to the HTML UI component in MATLAB.

Include Setup Function in Your HTML File

To connect the MATLAB HTML UI component in your app to the content in your HTML file, create a
setup function that defines and initializes a local htmlComponent JavaScript object. The HTML UI
component in MATLAB and the htmlComponent JavaScript object have Data properties that
synchronize with each other. The setup function is required if you want to set data from either
MATLAB or JavaScript and respond to changes in data that occur on the opposite side.

The setup function is called when one of these events happens:

* The HTML UI component is created in the figure and the content has fully loaded.
* The HTMLSource property changes to a new value.

The setup function is called only if it is defined. The htmlComponent JavaScript object is accessible
only from within the setup function.

The htmlComponent JavaScript object also has addEventListener and removeEventListener
properties. Use these properties to listen for DataChanged events from MATLAB. The event data
from DataChanged events provides the source htmlComponent JavaScript object with the old and
new data. For more information about the addEventListener and removeEventListener
methods, see EventTarget.addEventListener() and EventTarget.removeEventListener() on Mozilla®
MDN web docs.

Sample HTML File

This example shows an HTML file with the required setup function for enabling MATLAB and
JavaScript to respond to data changes from one another.

Within the setup function, once the htmlComponent JavaScript object has been initialized, you
define the behavior of the component. For example:

* Get the initial value of the Data property from the HTML UI component in MATLAB.

* Initialize your HTML or JavaScript by updating DOM elements or JavaScript widgets.

» Listen for "DataChanged" events in MATLAB and code a JavaScript response. For example, you
can update your HTML or JavaScript with the new data that triggered the event.

* Create a function that sets the Data property of the htmlComponent JavaScript object and
triggers a DataChangedFcn callback in MATLAB.

After the setup function, you can use your third-party JavaScript libraries as the library
documentation recommends.

Here is a sample HTML file, sampleHTMLFile.html.

5-23

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/removeEventListener

5 Component Choices and Customizations

<IDOCTYPE html>
<html>
<head>
<script type="text/javascript">

function setup(htmlComponent) {
console.log("Setup called:", htmlComponent);

// Get the initial 'Data' value from MATLAB

var initialData = htmlComponent.Data;
console.log("Initial MATLAB Data", initialData);

// Initialize your HTML or JavaScript here
// Update things like DOM elements or JavaScript widgets

var dom = document.getElementById("Content");
dom.textContent = initialData;

// Code response to data changes in MATLAB

htmlComponent.addEventListener("DataChanged", function (event) {
var changedData = htmlComponent.Data;
console.log("New Data from MATLAB", changedData);

// Update your HTML or JavaScript with the new data
var dom = document.getElementById("Content");
dom.textContent = changedData;

// Update 'Data' in MATLAB and trigger
// the 'DataChangedFcn' callback function

function updateData(newData) {
htmlComponent.Data = newData;
console.log("Changing Data in HTML", newData)
}
}
</script>
</head>

<body>
<div style="font-family:sans-serif;">
 The data from MATLAB will display here:

<div id ="Content"></div>
</div>

<!Reference supporting files here>

<script src=""></script>
<link rel="stylesheet" type="text/css" href="">
<link rel="icon" type="image/png" href="">

</body>

5-24

Create HTML File That Can Trigger or Respond to Data Changes

</html>

Debug an HTML File

If you create an HTML component that is not working as expected, or if you want to know what your
data looks like after conversion is complete between MATLAB and JavaScript, open the HTML file in
your system browser. Using your browser Developer Tools (DevTools), you can set breakpoints to test
portions of your setup function. When you debug your HTML file through the system browser, you
must simulate the connection between MATLAB and JavaScript that the setup function provides.

Simulate Sending Data from MATLAB to JavaScript

This example shows how to simulate the way MATLAB sends data to JavaScript so that you can debug
the HTML file.

Open this example in MATLAB. From the Current Folder browser, right-click the file called
sampleHTMLFile.html and select Open Outside MATLAB. The HTML file opens in your system
browser.

1 [n MATLAB, run this code to convert a MATLAB cell array of character vectors to a JSON string.
Copy the returned string value to your clipboard.

value = {'one'; 'two'; 'three'};
jsontxt = jsonencode(value)
jsontxt =

1 [”Oﬂe", ”tWO” , “three"] 1

2 In the DevTools of your system browser, open the file to view the code. Create a breakpoint at
line 16, where dom.textContent = initialData;.

3 Open the DevTools console and create the htmlComponent JavaScript object. Use the
JSON. parse method to convert the JSON string you just generated in MATLAB to a JavaScript
object and store it in the Data property of the htmlComponent object.
var htmlComponent = {
Data: JSON.parse('["one","two","three"]'), // JSON formatted text from MATLAB data
addEventListener: function() {console.log("addEventListener called with: ", arguments)}
+
4 While still in the DevTools console, call the setup function. When you resume execution of the
setup function, the data appears in the HTML page within DevTools.

setup (htmlComponent)

You can also simulate the "DataChanged" listener callback by JSON encoding and parsing data from
MATLAB into your JavaScript code.

Simulate Sending Data from JavaScript to MATLAB
If you want to debug how data is sent from JavaScript to MATLAB, use the JSON.stringify method

to convert a JavaScript object into a JSON-formatted string. Then, in MATLAB, use the jsondecode
function to convert that string to MATLAB data.

5-25

5 Component Choices and Customizations

See Also

Functions
jsondecode | jsonencode | uihtml

Properties
HTML Properties

More About
. “Display HTML Elements Styled by a Cascading Style Sheet” on page 8-14

5-26

App Layout

* “Lay Out Apps in App Designer Design View” on page 6-2
* “Manage Resizable Apps in App Designer” on page 6-11

* “Use Grid Layout Managers” on page 6-13

* “Apps with Auto-Reflow” on page 6-16

6 App Layout

Lay Out Apps in App Designer Design View

6-2

Design View in App Designer provides a rich set of layout tools for designing modern, professional-
looking applications. It also provides an extensive library of Ul components, so you can create various
interactive features. Any changes you make in Design View are automatically reflected in Code
View. Thus, you can configure many aspects of your app without writing any code.

To add a component to your app, use one of these methods:

* Drag a component from the Component Library and drop it on the canvas.

* Click a component in the Component Library and then move your cursor over the canvas. The
cursor changes to a crosshair. Click your mouse to add the component to the canvas in its default
size, or click and drag to size the component as you add it. Some components can only be added in
their default size.

COMPONENT LIBRARY

oo
oo

Search

COMMON
[rﬁu |ﬂ%| o
Aues Button Check Box

The name of the component appears in the Component Browser after you add it to the canvas. You
can select components in either the canvas or the Component Browser. The selection occurs in both
places simultaneously.

COMPONENT BROWSER

Search
~ & myApp
» app. UIFigure
app.Button -

Some components, such as edit fields and sliders, are grouped with a label when you drag them onto
the canvas. These labels do not appear in the Component Browser by default, but you can add them
to the list by right-clicking anywhere in the Component Browser and selecting Include component
labels in Component Browser. If you do not want the component to have a label, you can exclude it
by pressing and holding the Ctrl key as you drag the component onto to the canvas.

Lay Out Apps in App Designer Design View

+ Edit Field +

If a component has a label, and you change the label text, the name of the component in the
Component Browser changes to match that text. You can customize the name of the component by
double-clicking it and typing a new name.

COMPONENT BROWSER

Search D

+ &3 myApp

» app. UIFigure

A Editrielgj |

Customize Components
You can customize the appearance of a component by selecting it and then editing its properties in

the Inspector tab of the Component Browser. For example, from this tab you can change the
alignment of the text that displays on a button.

Inspector | Callbacks

Search p|E| (3

Text Bution

HorizontalAlignment

VerticalAlignment =

il

lean Browse

Some properties control the behavior of the component. For example, you can change the range of
values that a numeric edit field accepts by changing the Limits property.

6-3

6 App Layout

6-4

COMPONENT BROWSER

Search p

* & myApp
» app. UIFigure
app.EditField

Inspector | Callbacks

Search | |3
Label Edit Field

- WALLE

Value 0

Limits | 0,255|

RoundFracticnalValues

ValueDisplayFormat %e11.4g

When the app runs, the edit field accepts values only within that range.

5DIZ1| Value must be between 0 and 255

You can edit some properties directly in the canvas by double-clicking the component. For example,
you can edit a button label by double-clicking it and typing the desired text. To add multiple lines of
text, hold down the Shift key and press Enter.

T":."
Again]|

Align and Space Components

In Design View, you can arrange and resize components by dragging them on the canvas, or you can
use the tools available in the Canvas tab of the toolstrip.

App Designer provides alignment hints to help you align components as you drag them in the canvas.
Orange dotted lines passing through the centers of multiple components indicate that their centers
are aligned. Orange solid lines at the edges indicate that the edges are aligned. Perpendicular lines
indicate that a component is centered in its parent container.

Lay Out Apps in App Designer Design View

| Button |

Button

| Bution2 |

As an alternative to dragging components on the canvas, you can align components using the tools in
the Align section of the toolstrip.

.ﬁ] 1 : Evenly -
o - . |b Apply Hori | I
ta
Save Convert |J0 {I¢ 0o Same Size Grouping FReorde o Apply Henzentaly
Ho o _
- - - - - = Apply Vertically
FILE ALIGMN ARRAMGE SPACE

When you use an alignment tool, the selected components align to an anchor component. The anchor
component is the last component selected, and it has a thicker selection border than the other
components. To select a different anchor, hold down the Ctrl or Shift key and click the desired
component twice (once to deselect the component, and a second time to select it again). For example,

in the following image, the Format Options label is the anchor. Clicking the Align left & button
aligns the left edges of the drop-down and check box to the left edge of the label.

%nrmat E:Iptic-ns § %nrmat @ptions §

EJPEG N 'E — EJF’EG B -E

You can control the spacing among neighboring components using the tools in the Space section of
the toolstrip. Select a group of three or more components, and then select an option from the drop-
down list in the Space section of the toolstrip. The Evenly option distributes the space evenly within
the space occupied by the components. The 20 option spaces the components 20 pixels apart. If you
want to customize the number of pixels between the components, type a number into the drop-down
list.

1 &l : Evenl I
ok se g O - e |
I o Apply Horizontally

Save Convert o {lo Ho @ SameSize Grouping Feorde
- - - - M D Apply Vertically

FILE ALIGN ARRAMGE SPACE

6 App Layout

6-6

Next, click Apply Horizontally b or Apply Vertically "= For example, select Evenly and then

click Apply Vertically == to distribute the space among a vertical stack of components.

l{ MName !: l{ Mame IJ

Address lj.:' + Address +
Age 25 + g

|.J|J Age 25 +

|.J|1 Weight 150 + + Weight 150 +

Group Components

You can group two or more components together to modify them as a single unit. For example, you
can group a set of components after finalizing their relative positions, so you can then move them
without changing that relationship.

To group a set of components, select them in the canvas, and then select Grouping > Group in the
Arrange section of the toolstrip.

T m]] Ol [] =
|IIII|IIII|IIII|IIII|||||| ﬂ IIIIIIIIII|IIII|IIII|I|||| D

0 20 40 &0 S0 100 0 20 40 60 &0 100

The Grouping tool also provides functionality for these common tasks:

» Ungroup all components in a group — Select the group. Then select Grouping > Ungroup.

* Add a component to a group — Select the component and the group. Then select Grouping > Add
to Group.

* Remove a component from a group — Select the component. Then select Grouping > Remove
from Group.

Reorder Components
You can reorder components by using the Reorder tool in Design View.

For example, create a label and then create an image. By default, the image appears on top of the
label. The Component Browser shows the components based on their stacking order, with the
image first since it is on top and the label second.

Lay Out Apps in App Designer Design View

COMPONENT BROWSER
abel Search o
~ & appi
| « app.UIFigure

[| app.Image
app.Label 7

To reorder the components so that the label is on top of the image, select the image on the canvas,
and then select Reorder in the toolstrip. You can also right-click the image and select the Reorder
tool. Send the image backward by choosing Send Backward.

Iu:llml L:I—l ™ . . ' Shcwgnd :

Save Convert Same Size Grouping| | Rearder

- - - - - Apply Vertica ite

FILE ALIGM ARRAMGE
app1.mlapp* =

COMPOMENT LIBRARY

- h Send Backward Ctrl+Shift+L

’7 Check Box
Select state of binary option L|J_?_| Send to Back Ced+Shift+End

The image now is behind the label. When you reorder components, the order of the components
inside the Component Browser also changes.

COMPONENT BROWSER

P
LF 1

Label Search o
L |~ & appi a

» app.UlFigure

app.Label

= - app.lmage

Arrange Components in Containers

When you drag a component into a container such as a panel, the container turns blue to indicate
that the component is a child of the container. This process of placing components into containers is
called parenting.

6 App Layout

6-8

Options

Option 1+ w

The Component Browser shows the parent-child relationship by indenting the name of the child
component under the parent container.

& myAnp
~ app UIFigure

~ app.OptionsPanel

app.DropDown

Create and Edit Context Menus

There are several ways to create context menus in App Designer. Since context menus are visible only
when you right-click a component in the running app, they do not appear in the figure when you are
in Design View. This makes the workflow for editing context menus slightly different than for other
components. These sections describe the ways to create and edit context menus.

Create Context Menus

To create a context menu, drag it from the Component Library onto the Ul figure or another
component. This assigns the context menu to the ContextMenu property of that component. When
you create a context menu it appears in an area on the canvas below the figure. This Context Menus
area gives you a preview of each context menu you created and indicates how many components each
one is assigned to. For example, this is how one set of context menus might appear on the canvas:

Lay Out Apps in App Designer Design View

0.2 Edit Field 0
0 ! ! ' ' ' Reset Plot
0 0.2 0.4 0.6 0.3 1
X
app.ResetPlotContextMenu
Assigned to:
CONTEXT MENUS app.-ULAxes
app.ResetPlotButton
app. AppOp 1 app. Confext. .. app. ResetF. W
Export Menu Reset Plot
Copy Menu2

If you want to create a context menu without assigning it to a component, drag it to the Context

Menus area instead.

Alternatively, create and assign a context menu to a specific component by right-clicking on that
component and selecting Context Menu > Add New Context Menu.

All context menus are created as children of the Ul figure and are added to the Component
Browser, even if they are not assigned to a component.

Edit Context Menus

Edit a context menu by double-clicking it in the Context Menus area or by right-clicking it and
selecting the edit option for the name of your menu. This brings the context menu into the Context
Menus editing area where you can edit and add menu items and submenus.

CONTEXT MENUS

< Editing app. ContextMenu

Menu|| | -!-)

Menu2

(+)

6-9

6 App Layout

6-10

When you are finished editing, click the back arrow (<) to exit the edit area.
Change Context Menu Assignments

To disassociate a context menu from a component, right-click on the component and select Context
Menu > Unassign Context Menu.

To replace the context menu that is assigned to a component with another one, you can drag the
context menu onto the component, or you can right-click on the component, click Context Menu >
Replace With, and select one of the other context menus you have created. If you only created one
context menu, then the Replace With option does not appear.

Alternatively, select a component in the Component Browser and select Interactivity from the
Inspector tab. Then, expand the ContextMenu drop-down list and select a different context menu to
assign to the component.

See Also

More About

. “App Building Components” on page 5-2

. “App Designer Keyboard Shortcuts” on page 9-2

. “Manage Resizable Apps in App Designer” on page 6-11

Manage Resizable Apps in App Designer

Manage Resizable Apps in App Designer

Apps you create in App Designer are resizable by default. The components reposition and resize
automatically as the user changes the size of the window at run-time. The AutoResizeChildren
property controls this automatic resize behavior. By default, App Designer enables this property for
the Ul figure and all its child containers such as panels and tabs. To set the AutoResizeChildren
property of a child container to a different value, set the value for the child container after setting the
value for the parent.

4| Temperature Sensivity — O x 4| Temperature Sensivity — O X

1 1

08 0.8
0.6 0.6

—-
0.4 0.4
0.2 0.2
0
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Linear Interpolation = Update Limear Interpolation v Update

When the AutoResizeChildren property is enabled for a container, MATLAB manages the size and
position of only the immediate children in the container. Components in nested containers are
managed by the AutoResizeChildren property of their immediate parent. To ensure that the
alignment of components relative to one another (like a grouping of buttons) is preserved when your
app is resized, parent the grouping of components to a panel, instead of directly to the figure.

Resizing Graphics Objects with Normalized Position Units

When graphics objects, like axes or charts, use normalized position units and are the child of a
resizeable container, certain properties of the graphics object are affected after the parent container
is resized. For example, if axes or charts use a value of 'normalized' for the Units property and
are parented to a container with the AutoResizeChildren property setto '‘on', then:

* The value of the OuterPosition property for the axes or chart changes when the app is resized.
» The axes or chart does not shrink smaller than a minimum size when the app is resized.

If you want to avoid either of these behaviors, set the AutoResizeChildren property of the
container to 'off"'.

Alternatives to Default Auto-Resize Behaviors

If you want more flexibility over how your app automatically resizes, use grid layout managers or the
auto-reflow options in App Designer instead of the AutoResizeChildren property. For more
information about these options, see:

* “Use Grid Layout Managers” on page 6-13

6-11

6 App Layout

* “Apps with Auto-Reflow” on page 6-16

If the resize behaviors supported by AutoResizeChildren, grid layout managers, or auto-reflow
options are not the behaviors you want, then you can create custom resize behaviors by writing a
SizeChangedFcn callback function for the container. For more information, see the
“SizeChangedFcn” property.

See Also
Ul Figure

More About
. “Lay Out Apps in App Designer Design View” on page 6-2
. “Write Callbacks in App Designer” on page 7-15

6-12

Use Grid Layout Managers

Use Grid Layout Managers

Grid layout managers provide a way to lay out your app without having to set pixel positions of Ul
components in Position vectors. For resizeable apps, grid layout managers provide more flexibility
than the automatic resize behavior in App Designer. They are also easier to configure than it is to
code SizeChangedFcn callback functions.

Add and Configure Grid Layout Manager

In App Designer, you can add a grid layout manager to a blank app or to empty container components
within the figure.

To use a grid layout manager, drag a grid layout from the Component Library onto the canvas.
Alternatively, you can right-click the figure or container and select Apply Grid Layout from the
context menu. A grid layout manager spans the entire app window or container that you place it in. It
is invisible unless you are actively configuring it on the App Designer canvas.

To configure the grid layout manager, in Design View, bring the grid layout into focus by clicking in

the area where you added it. Then, select the % button from the upper-left corner of the grid layout
manager, or right-click the grid layout and select Configure Grid Layout. Then, select a row or
column and from the Resize Configuration menu, specify Fit, Weighted, or Fixed. For more

information about these options, see GridLayout Properties. You can also add or remove rows and
columns.

[===] oa| (o3
OOl) OO | =E=|
[===111-="NA|===]

Resize Configuration

]
[
I
1
i
i

o) Fit
Weighted b
Fixed Pixel

Convert Components from Pixel-Based Positions to Grid Layout
Manager

You can also convert the components within a Ul figure or container from pixel-based positioning to a
grid layout manager. When you apply a grid layout manager to a UI figure or container that has
components in it, the components get added to the grid layout manager and their Position vectors
get replaced by Layout.Row and Layout.Column values that specify their location in the grid. The
component hierarchy also updates in the Component Browser.

6-13

6 App Layout

COMPONENT BROWSER COMPONENT BROWSER

Search Search
* & myApp ~ & myApp
+ gpp.LUIFigure » app. UIFigure
app.UITable _.. - app.GridLayout
app.UlAxes app.UITakle
app.SelectFontMameDropDown app. UlAxes
app.SelectFontSizeDropDown app.SelectFontMameDropDown

app.SelectFontSizelropDown

Grid layout managers support different properties than other container components. In some cases,
you might need to update your callback code if it sets these types of properties, or if it sets
component properties that are not available when they are managed by the grid layout. If your
callbacks or other behaviors do not work as expected, then look for code patterns like the ones lists in

this table.
Symptom or Warning Explanation Suggested Action
Warning: Unable to set You cannot set the Position Specify a grid location for the
'Position', property on components in a component by setting the
'"InnerPosition', or grid layout manager. Layout property with
'OuterPosition' for appropriate Row and Column
components in values.
'GridLayout'.
Error using Properties you set on other Update your code so that it sets
matlab.ui.container.Grid |container components might not |properties on the intended
Layout/set be supported on the grid layout |container.
There is no FontSize manager.
property on the
GridLayout class.
A context menu assigned to a When you add a grid layout Reassign the context menu to
container does not open in the |manager to a container, it spans |the grid layout.
running app. the entire container. This means
that click events happen on the
grid, instead of the container.

Example: Convert Components to Use Grid Layout Manager Instead of
Pixel-Based Positions

This app shows how to apply a grid layout manager to the figure of an app that already has
components in it. It also shows how to configure the grid layout manager so that the rows and
columns automatically adjust to accommodate changes in size of text-based components.

1 Open the app in App Designer. In Design View, drag a grid layout manager into the figure.

2 Right-click the grid layout manager that you just added to the figure and select Configure Grid
Layout from the context menu.

6-14

Use Grid Layout Managers

One-by-one, select the rows and columns of the grid that contain the drop-down menus and the

table and change their resize configurations to Fit. When you are finished, verify that in the
Inspector tab of the Component Browser, the ColumnWidth values are

12.64x,1.89x,fit,fit, fit, fit and the RowHeight values are

1x,fit,1.93x,fit,3.07x,fit.

Switch to Code View. Update each of the DropDownValueChanged callbacks so that the

allchild functions set the font name and font size on components in app.GridLayout, instead

of in app.UIFigure.

change.

Now run the app to see how the grid adjusts to accommodate the components as their sizes

Ul Figure

Title Salect Font Mame | Helvetica -

Select Font Size | 12 L

/ \ Column1 Column2 |Column3 Column

4 Ul Figure

2571

201

Title

Select Font Name Helvetica

Select Font Size 24

Column 1

17
23

4
10
1

Column 2

24
5
6

12

18

Column 3

13
19
25

Column 4

8
14
20
21

2

o x

v

Column &

15
16
22
3
9

See Also

Functions
uigridlayout

Properties
GridLayout Properties

6-15

6 App Layout

Apps with Auto-Reflow

Apps with auto-reflow are preconfigured app types that optimize the viewing experience by
automatically adjusting the size, location, and visibility of the app content in response to screen size,
orientation, and platform. Use apps with auto-reflow if you expect to run or share your apps across
multiple environments or desktop resolutions.

Mongage Calculator

j— Principal and Interest

1500 ¢ e
Principal |
Lean Amount 30000 Interest |

What is Auto-Reflow?

Apps with auto-reflow extend the existing auto-resize behaviors that are on by default in all App
Designer apps. These apps detect and adapt to the available screen size when they are first
displayed. Both 2- and 3-panel apps have a large flexible-size panel, intended for visualizations like
plots. As the app changes size, the large panel grows or shrinks, depending on the space available.

o x & 1A Fapeie = - %

e
= Optien 1
pmon

Opmon §

Parpmaien
Y T
Parmrata 3
Fararrster

Congions

Condlios §
Conanae 1
Conaen)

Conanos 4

Cpterd

w Cglion ¥

Snde | Opien 1 . Ggton 1

Opten)

PaET

Condigny
Candtion 1
Cangton T
Canaen ¥

Canaton &

Parwnater 2

e x e] Mrmgm

When an app is resized beyond a certain predefined threshold, the panels in the app reflow and
reorder to make the best use of the space. As panels reorder themselves, they and the components in
them dynamically adjust in size while extra space between components (whitespace) is also reduced.

6-16

Apps with Auto-Reflow

......

,,,,,

When an app becomes very small, auto-resize stops eliminating whitespace and resizing components.
This can put some components outside the visible part of the window. To access these components,
set the Scrollable property of the panels to'on'. This enables scroll bars to appear when
necessary.

Create New App with Auto-Reflow

The App Designer Start Page includes options to create new 2-panel and 3-panel apps with auto-
resize and auto-reflow, and canvas interactions to guide app building. No additional code is needed to
achieve the reflowing and resizing behavior.

Convert Existing App to Use Auto-Reflow

You can also convert an existing app into an app with auto-reflow by expanding the Convert "1
drop-down menu from the File section of the Canvas tab and selecting 2-Panel App with Auto-
Reflow or 3-Panel App with Auto-Reflow.

When you convert an existing app to an app with auto-reflow, App Designer:

* Creates a duplicate of your app with autoreflow appended to the file name. Your original app
file is not changed.

6-17

6 App Layout

6-18

* Automatically adds preconfigured panels to your app to provide the automatic reflow and resize

behaviors.

* Creates a SizeChangedFcn callback function in order to control the layout of the app as the

figure is resized.

In some cases, after App Designer has converted your app, you may need to update your callback
code or the position of some components. This table describes some examples of adjustments you that

you may need to make.

Symptom

Explanation

Suggested Action

Components overlap

App Designer tries to maintain
the relative positions of your
components, but you may need
to make some minor
adjustments.

Adjust the position of
components as needed.

Callback code does not behave
as expected

When the preconfigured panels
are added to your app the
hierarchy of the components in
your app changes. If your
callbacks reference components
based on their parent, they may
need to be updated.

Update the parent of the
components in your callbacks.

Existing SizeChangedFcn
callback on the UI figure does
not behave as expected

Apps with auto-reflow generate
their own SizeChangedFcn
callback for the figure. If your
app already had a
SizeChangedFcn callback for
the figure, App Designer
disconnects it from the figure,
but it does not remove the code.

After your app has been
converted, modify or remove the
SizeChangedFcn callback that
was disconnected from the
figure. You can assign it to
another container component,
or remove it if it is no longer
needed.

Example: App with Auto-Reflow

This app has components within panels that have auto-reflow behavior. Controls for data selection are
parented to the left panel and data visualizations are parented to two tabs in the right panel. Run the
app and change the size of the app window. The app content resizes and reflows based on the app

window size.

Apps with Auto-Reflow

4| Patients Display - x
Plot | Data |
Data Selection
Blood Pressure
Location Systolic (_J) Diastolic
140 - .
O o O
Hospital Mame | All O o o
130 -]
[0
: o &
E oo 99,0
Gender = I o a 2
> 120 0% 8
O O o g
Male 0© O
110}F
[|Female
150 170 180 180 210
Smoker el
Plotting Options
| ez _
(@) Scatter
Mo () Histogram

See Also
appdesigner

6-19

App Programming

* “Manage Code in App Designer Code View” on page 7-2

» “Startup Tasks and Input Arguments in App Designer” on page 7-8

* “Create Multiwindow Apps in App Designer” on page 7-11

* “Write Callbacks in App Designer” on page 7-15

* “Reuse Code Using Helper Functions” on page 7-20

* “Share Data Within App Designer Apps” on page 7-23

* “Compatibility Between Different Releases of App Designer” on page 7-26
* “Use One Callback for Multiple App Designer Components” on page 7-28

7 App Programming

Manage Code in App Designer Code View

7-2

Code View provides most of the same programming features that the MATLAB Editor provides. It
also provides a rich set of features that help you to navigate your code and avoid many tedious tasks.
For example, you can search for a callback by typing part of its name in a search bar. Clicking a
search result scrolls the editor to the definition of that callback. And if you change the name of a
callback, App Designer automatically updates all references to it in your code.

Manage Components, Functions, and Properties

Code View has three panes to help you manage different aspects of your code. This table describes

each of them.

Pane Name Pane Appearance Pane Features
Component : z * Context menu — Right-click a component in the list
Browser to display a context menu that has options for

deleting or renaming the component, adding a
callback, or displaying help. Select the Include
Component Labels in Component Browser
option to display grouped component labels.

Search bar —Quickly locate a component by typing
part of its name in the search bar.

Inspector tab — Use this tab to view or change
property values for the component that is currently
selected. You can also search for a property by
typing part of the name in the search bar at the top
of this tab.

Callbacks tab — Use this tab to manage the
callbacks for the component that is selected.

Code Browser

CODE BROWSER
Functions | Properties

Callbacks, Functions, and Properties tabs — Use
these tabs to add, delete, or rename any of the
callbacks, helper functions, or custom properties in
your app. Clicking an item in the Callbacks or
Functions tab scrolls the editor to the
corresponding section in your code. Rearrange the
order of callbacks by selecting the callback you
want to move and then, drag and drop the callback
into its new position in the list. This also
repositions the callback in the editor.

Search bar — Quickly locate a callback, helper
function, or property by typing part of its name in
the search bar.

App Layout

App thumbnail — Use the thumbnail image to
locate components in large, complex apps that have
many components. Selecting a component in the
thumbnail selects the component in the
Component Browser.

Manage Code in App Designer Code View

Identify Editable Sections of Code

In the Code View editor, some sections of code are editable and some are not. Uneditable sections
are generated and managed by App Designer, whereas editable sections correspond to:

* The body of functions you define (e.g., callbacks and helper functions)
* Custom property definitions

In the default color scheme, uneditable sections of code are gray and editable sections of code are
white.

14 #% Component initialization

16 properties (Access = private)
17 X =5 % Average value

18 end

19

#% Callbacks that handle component events
22 methods (Access = private)

24 % Button pushed function: Button

function ButtonPushed(app, event)
disp('Hello World");

37 end

Program Your App

App Designer defines your app as a MATLAB class. You do not need to understand classes or object-
oriented programming to create an app because App Designer manages those aspects of the code.
However, programming in App Designer requires a different workflow than working strictly with

functions. You can review a summary of this workflow at any time by clicking the Show Tips ~~
button in the Resources tab of the toolstrip.

Manage Ul Components

When you add a Ul component to your app, App Designer assigns a default name to the component.
Use that name (including the app prefix) to refer to the component in your code. You can change the
name of a component by double-clicking the name in the Component Browser and typing a new
name. App Designer automatically updates all references to that component when you change its
name.

COMPONENT BROWSER

» app. UIFigure

app [EME | -

7 App Programming

To use the name of a component in your code, you can save some time by copying the name from the
Component Browser. Place your cursor in an editable area of the code where you want to add the
component name. Then, from the Component Browser, right-click the component name and select
Insert at Cursor. Alternatively, you can drag the component name from the list into your code.

COMPONENT BROWSER

Code View
Search D
“
v 3 myApp -
= app.UIFigure
app.Button

Include component labels in Component Erowser
Rename F2 &

Delete Deleta

Insert at Cursor -
L]

Callbacks ¥

Help on Selection

To delete a component, select its name in the Component Browser and press the Delete key.
Manage Callbacks

To make a component respond to user interactions, add a callback. Right-click the component in the
Component Browser and select Callbacks > Add (callback property) callback.

If you delete a component from your app, App Designer deletes the associated callback only if the
callback has not been edited and is not shared with other components.

To delete a callback manually, select the callback name in the Callbacks tab of the Code Browser
and press the Delete key.

For more information about callbacks, see “Write Callbacks in App Designer” on page 7-15.
Share Data Within Your App

To store data, and share it among different callbacks, create a custom property. For example, you
might want your app to read a data file and allow different callbacks in your app to access that data.

To create a property, expand the Property @ drop-down in the Editor tab, and select Private

Property or Public Property. App Designer creates a template property definition and places your
cursor next to that definition. Change the name of the property as desired.

properties (Access = public)
X % Average cost
end

Manage Code in App Designer Code View

To reference the property in your code, use dot notation of the form app.Propertyname. For
example, app . X references the property named X.

For more information about creating and using custom properties, see “Share Data Within App
Designer Apps” on page 7-23.

Single-Source Code that Runs in Multiple Places

If you want to execute a block of code in multiple parts of your app, create a helper function. For
example, you might want to update a plot after the user changes a number in an edit field or selects
an item in a drop-down list. Creating a helper function allows you to single-source the common
commands and avoid having to maintain redundant sets of code.

To add a helper function, expand the Function @ drop-down in the Editor tab, and select Private
Function or Public Function. App Designer creates a template function and places your cursor in
the body of that function.

To delete a helper function, select the function name in the Functions tab of the Code Browser and
press the Delete key.

For more information about writing helper functions, see “Reuse Code Using Helper Functions” on
page 7-20.

Create Input Arguments

To add input arguments to your app, click App Input Arguments @ in the Editor tab. Input
arguments are commonly used for creating apps that have multiple windows. For more information,
see “Startup Tasks and Input Arguments in App Designer” on page 7-8.

Limit Your App to Only One Running Instance at a Time

When you create an app in App Designer you have the option to select between two run behaviors for
the app:

* Allow only a single running instance of the app at a time.
» Allow multiple instances of the app to run at the same time. This is the default behavior.

To change the run behavior of your app, select the app node from the Component Browser. Then,
from the Code Options section of the Inspector tab, select or clear Single Running Instance.

When Single Running Instance is selected and you run the app multiple times, MATLAB reuses the
existing instance and brings it to the front rather than creating a new one. When this option is
cleared, MATLAB creates a new app instance each time you run it and continues to run the existing
instances. These run behaviors apply to apps that you run from the Apps tab on the MATLAB
Toolstrip or from the Command Window.

7-5

7 App Programming

When you run apps from App Designer their behavior doesn't change whether this option is selected
or cleared. App Designer always closes the existing app instance before creating a new one.

Fix Code Problems and Run-Time Errors

Like the MATLAB Editor, the Code View editor provides Code Analyzer messages to help you
discover errors in your code.

function EditFieldvalueChanged(app, event)
- EditField|.value = 18;

xxxxxxxxxxxxxxxxx

Use app.EditField to reference a property of app. | Fix

If you run your app directly from App Designer (by clicking Run *), App Designer highlights the
source of errors in your code, should any errors occur at run time. To hide the error message, click
the error indicator (the red circle). To make the error indicator disappear, fix your code and save your
changes.

% Button pushed function: Button

function ButtonPushed(app, event)
app.EditField.value = [18 28]; @ (line 11@)
end

Error using

matlab.uwi.control.internal.model.fbstractilumericComponent/set

"Waluse' must be a double scalar.

Personalize Code View Appearance

You can customize how your code appears in the Code View editor. To change your code view

preferences, go to the Home tab of the MATLAB Desktop. In the Environment section, click LE'}
Preferences.

Change Color Settings

To change the color settings for editable sections of code and to customize syntax highlighting, select
MATLAB > Colors and adjust the desktop tool colors and the MATLAB syntax highlighting colors.
These settings affect both the App Designer Code View editor and the MATLAB Editor. For more
information, see “Change Desktop Colors”.

To change the background color of uneditable sections of code, select MATLAB > App Designer and
adjust the read-only background color. This setting can be changed only if the Use system colors
option in MATLAB > Color Preferences is unchecked.

Change Tab Preferences

To specify the size of tabs and indents in the Code View editor, select MATLAB > Editor/Debugger
> Tab. From here, you can specify the size of tabs and indents, as well as details about how tabs
behave. These preferences affect both the App Designer Code View editor and the MATLAB Editor.
For more information, see “Editor/Debugger Tab Preferences”.

Manage Code in App Designer Code View

See Also

Related Examples

. “Write Callbacks in App Designer” on page 7-15

. “Share Data Within App Designer Apps” on page 7-23

. “Reuse Code Using Helper Functions” on page 7-20

. “Startup Tasks and Input Arguments in App Designer” on page 7-8

7-7

7 App Programming

Startup Tasks and Input Arguments in App Designer

App Designer allows you to create a special function that executes when the app starts up, but before
the user interacts with the UI. This function is called the startupFcn callback, and it is useful for
setting default values, initializing variables, or executing commands that affect initial state of the app.
For example, you might use the startupFcn callback to display a default plot or a show a list of
default values in a table.

Create a startupFcn Callback

To create a startupFcn callback, right-click the app node from the top of the Component Browser
hierarchy, and select Callbacks > Add StartupFcn callback. The app node has the same name as
your MLAPP file.

COMPONENT BROWSER

rch D

Se

ai

> &3 myApp

« app.UIFigure Include component labels in Component BErowser
app.Button
Add StariupFcn callback Callbacks ¥

Help on Seleclion

App designer creates the function and places the cursor in the body of the function. Add commands to
this function as you would do for any callback function. Then save and run your app.

#% Callbacks that handle component events

o

10 methods (Access = private)

11

12 % Code that executes after component creation
13 function startupFecn({app)

14 i

15 end

See “App with Auto-Reflow That Updates Plot Based on User Selections” on page 8-3 for an
example of an app that has a startupFcn callback.

Define Input App Arguments

The startupFcn callback is also the function where you can define input arguments for your app.
Input arguments are useful for letting the user (or another app) specify initial values when the app
starts up.

To add input arguments to an app, open the app in App Designer and click Code View. Then click

App Input Arguments @ in the Editor tab.

Startup Tasks and Input Arguments in App Designer

App Input Arguments

startupFu:n[app_“ |j:

The App Input Arguments dialog box allows you to add or remove input arguments in the function
signature of the startupFcn callback. The app argument is always first, so you cannot change that
part of the signature. Enter a comma-separated list of variable names for your input arguments. You
can also enter varargin to make any of the arguments optional. Then click OK.

After you click OK, App Designer creates a startupFcn callback that has the function signature you
defined in the dialog box. If your app already has a startupFcn callback, then the function signature
is updated to include the new input arguments.

After you have created the input arguments and coded the startupFcn, you can test the app.
Expand the drop-down list from the Run button in the toolstrip. In the second menu item, specify
comma-separated values for each input argument. The app runs after you enter the values and press
Enter.

>

Run

-

Run: myApp

Run: m:,fﬁ.pp[|5..25|]:)

Edit App Input Arguments...

Note MATLAB might return an error if you click the Run button without entering input arguments in
the drop-down list. The error occurs because the app has required input arguments that you did not

specify.

After successfully running the app with a set of input arguments, the Run button icon contains a blue
circle.

e

-

The blue circle indicates that your last set of input values are available for re-running your app
without having to type them again. Up to seven sets of input values are available to choose from.

7 App Programming

7-10

Click the top half of the Run button to re-run the app with the last set of values. Or, click the bottom
half of the Run button and select one of the previous sets of values.

The Run button also allows you to change the list of arguments in the function signature. Select Edit
App Input Arguments... from the drop-down list in the bottom half of the Run button.

>

Run

-

Rurn: myApp

Rur: mylppl | = v)

Edit App Input Arguments...

Alternatively, you can open the same App Input Arguments dialog box by clicking App Input
Arguments D in the toolstrip, or by right-clicking the startupFcn callback in the Code Browser.

See “Create Multiwindow Apps in App Designer” on page 7-11 for an example of an app that uses
input arguments.

See Also

Related Examples
. “Write Callbacks in App Designer” on page 7-15
. “Create Multiwindow Apps in App Designer” on page 7-11

Create Multiwindow Apps in App Designer

Create Multiwindow Apps in App Designer

A multiwindow app consists of two or more apps that share data. The way that you share data
between the apps depends on the design. One common design involves two apps: a main app and a
dialog box. Typically, the main app has a button that opens the dialog box. When the user closes the
dialog box, the dialog box sends the user's selections to the main window, which performs
calculations and updates the UL

4 . 1
Main App [Dialog Box

L]

L]

| .

-~ - (OK)
. r.

e .

These apps share information in different ways at different times:
* When the dialog box opens, the main app passes information to the dialog box by calling the
dialog box app with input arguments.

* When the user clicks the OK button in the dialog box, the dialog box returns information to the
main app by calling a public function in the main app with input arguments.

Overview of the Process

To create the app described in the preceding section, you must create two separate apps (a main app
and a dialog box app). Then perform these high-level tasks. Each task involves multiple steps.

* “Send Information to the Dialog Box” on page 7-11 — Write a startupFcn callback in the dialog
box app that accepts input arguments. One of the input arguments must be the main app object.
Then, in the main app, call the dialog box app with the input arguments.

* “Return Information to the Main App” on page 7-13 — Write a public function in the main app
that updates the UI based on the user's selections in the dialog box. Because it is a public
function, the dialog box can call it and pass values to it.

* “Manage Windows When They Close” on page 7-13 — Write CloseRequest callbacks in both
apps that perform maintenance tasks when the windows close.

To see an implementation of all the steps in this process, see Plotting App That Opens a Dialog Box on
page 7-14.

Send Information to the Dialog Box

Perform these steps to pass values from the main app to the dialog box app.

7-11

7 App Programming

7-12

In the dialog box app, define input arguments for the startupFcn callback, and then add code
to the callback. Open the dialog box app into Code View. In the Editor tab, click App Input

Arguments D I the App Input Arguments dialog box, enter a comma-separated list of
variable names for your input arguments. Designate one of the inputs as a variable that stores
the main app object. Then click OK.

App Input Arguments

startupFen(app, | Mainapp, sz,

Add code to the startupFcn callback to store the value of mainapp.

function startupFcn(app,mainapp,sz,c)
% Store main app object
app.CallingApp = mainapp;

[}

% Process sz and c inputs

end

For a fully coded example of a startupFcn callback, see Plotting App That Opens a Dialog Box
on page 7-14.

Call the dialog box app from within a callback in the main app. Open the main app into Code
View and add a callback function for the Options button. This callback disables the Options
button to prevent users from opening multiple dialog boxes. Next, it gets the values to pass to the
dialog box, and then it calls the dialog box app with input arguments and an output argument.
The output argument is the dialog box app object.

function OptionsButtonPushed(app,event)
% Disable Plot Options button while dialog is open
app.OptionsButton.Enable = 'off"';

% Get szvalue and cvalue

o°

% Call dialog box with input values
app.DialogApp = DialogAppExample(app,szvalue,cvalue);
end

Define a property in the main app to store the dialog box app. Keeping the main app open, create
a private property called DialogApp. Select Property > Private Property in the Editor tab.
Then, change the property name in the properties block to DialogApp.

properties (Access = private)
DialogApp % Dialog box app
end

Create Multiwindow Apps in App Designer

Return Information to the Main App

Perform these steps to return the user's selections to the main app.

1

Create a public function in the main app that updates the UI. Open the main app into Code View
and select Function > Public Function in the Editor tab.

Change the default function name to the desired name, and add input arguments for each option
you want to pass from the dialog box to the main app. The app argument must be first, so specify
the additional arguments after that argument. Then add code to the function that processes the
inputs and updates the main app.

function updateplot(app,sz,c)
% Process sz and c

end

For a fully coded example of a public function, see Plotting App That Opens a Dialog Box on page
7-14.

Create a property in the dialog box app to store the main app. Open the dialog box app into Code
View, and create a private property called CallingApp. Select Property > Private Property in
the Editor tab. Then change the property name in the properties block to CallingApp.

properties (Access = private)
CallingApp % Main app object

end

Call the public function from within a callback in the dialog box app. Keeping the dialog box app
open, add a callback function for the OK button.

In this callback, pass the CallingApp property and the user's selections to the public function.
Then call the delete function to close the dialog box.

function ButtonPushed(app,event)
% Call main app's public function
updateplot(app.CallingApp,app.EditField.Value,app.DropDown.Value);

% Delete the dialog box
delete(app)
end

Manage Windows When They Close

Both apps must perform certain tasks when the user closes them. Before the dialog box closes, it
must re-enable the Options button in the main app. Before the main app closes, it must ensure that
the dialog box app also closes.

1

Open the dialog box app into Code View, right-click the app.UIFigure object in the
Component Browser, and select Callbacks > Add CloseRequestFcn callback. Then add code
that re-enables the button in the main app and closes the dialog box app.

function DialogAppCloseRequest(app,event)
% Enable the Plot Options button in main app
app.CallingApp.OptionsButton.Enable = 'on’;

% Delete the dialog box

7-13

7 App Programming

7-14

delete(app)
end
2 Open the main app into Code View, right-click the app.UIFigure object in the Component
Browser, and select Callbacks > Add CloseRequestFcn callback. Then add code that deletes
both apps.

function MainAppCloseRequest(app,event)
% Delete both apps
delete(app.DialogApp)
delete(app)

end

Example: Plotting App That Opens a Dialog Box

This app consists of a main plotting app that has a button for selecting options in a dialog box. The
Options button calls the dialog box app with input arguments. In the dialog box, the callback for the
OK button sends the user's selections back to the main app by calling a public function in the main

app.
Y Options . -] *
Sample S@e 35
Colormap | Parula -
oK
See Also
More About

. “Write Callbacks in App Designer” on page 7-15
. “Startup Tasks and Input Arguments in App Designer” on page 7-8

Write Callbacks in App Designer

Write Callbacks in App Designer

A callback is a function that executes when a user interacts with a Ul component in your app. Most
components can have at least one callback. However some components, such as labels and lamps, do
not have callbacks because those components only display information.

To see the list of callbacks that a component supports, select the component and click the Callbacks
tab in the Component Browser.

Create a Callback Function

There are several ways to create a callback for a Ul component. You might use different approaches
depending on what part of App Designer you are working in. Choose the most convenient approach
from the following list.

* Right-click a component in the canvas, Component Browser, or App Layout pane, and select
Callbacks > Add (callback property) callback.

T

IIIIIlIIIIlIIIIlIIIIIIII ICL.It
0O 20 40 &0 80

Copy

Duplicate

Delete

Callbacks ¥ | Add ValueChangedFcn callback
Help on Selection Add ValueChangingFen callback@

» Select the Callbacks tab in the Component Browser. The left side of the Callbacks tab shows a
list of supported callback properties. The drop-down menu next to each callback property allows
you to specify a name for the callback function. The down-arrow next to the text field allows you to
select a default name in angle brackets <>. If your app has existing callbacks, the drop-down
includes those callbacks. Select an existing callback when you want multiple UI components to
execute the same code.

7-15

7 App Programming

COMPONENT BROWSER

Search D

~ & myApp
* app. UIFigure
app. AmplitudeSlider
app.Spinner

Inspector | Callbacks

ValueChangedFcn | Function name | -

ValueChangingFen | Function name =

=add ValueChangingFcn callback=

AmplitudeSlidervalueChanging L}

In code Code View, in the Editor tab, click Callbacks Q Or in the Code Browser on the
Callbacks tab, click the /%7 button.

Add Callback Function

Component: | Slider -
Callback: ValueChangingFcn -
Mame: SliderValueChanging

Add Callback Cancel

Specify the following options in the Add Callback Function dialog box:

* Component — Specify the Ul component that executes the callback.

* Callback — Specify the callback property. The callback property maps the callback function to
a specific interaction. Some components have more than one callback property available. For
example, sliders have two callback properties: ValueChangedFcn and ValueChangingFcn.
The ValueChangedFcn property executes after the user moves the slider and releases the
mouse. The ValueChangingFcn property for the same component executes repeatedly while
the user moves the slider.

* Name — Specify a name for the callback function. App Designer provides a default name, but
you can change it in the text field. If your app has existing callbacks, the Name field has a
down-arrow next to it, indicating that you can select an existing callback from a list.

Using Callback Function Input Arguments

All callbacks in App Designer have the following input arguments in the function signature:

7-16

Write Callbacks in App Designer

* app — The app object. Use this object to access Ul components in the app as well as other
variables stored as properties.

* event — An object that contains specific information about the user's interaction with the Ul
component.

The app argument provides the app object to your callback. You can access any component (and all
component-specific properties) within any callback by using this syntax:

app.Component.Property

For example, this command sets the Value property of a gauge to 50. In this case, the name of the
gauge is PressureGauge.

app.PressureGauge.Value = 50;

The event argument provides an object that has different properties, depending on the specific
callback that is executing. The object properties contain information that is relevant to the type of
interaction that the callback is responding to. For example, the event argument in a
ValueChangingFcn callback of a slider contains a property called Value. That property stores the
slider value as the user moves the thumb (before they release the mouse). Here is a slider callback
function that uses the event argument to make a gauge track the value of the slider.

function SliderValueChanging(app, event)
latestvalue = event.Value; % Current slider value
app.PressureGauge.Value = latestvalue; % Update gauge
end

To learn more about the event argument for a specific component's callback function, see the
property page for that component. Right-click the component, and select Help on Selection to open
the property page. For a list of property pages for all Ul components, see “App Building Components”
on page 5-2.

Searching for Callbacks in Your Code

If your app has a lot of callbacks, you can quickly search and navigate to a specific callback by typing
part of the name in the search bar at the top of the Callbacks tab in the Code Browser. After you
begin typing, the Callbacks pane clears, except for the callbacks that match your search.

CODE BROWSER

Callbacks | Functions | Properties

| Slided x | gn

SlidervalueChanging

Click a search result to scroll the callback into view. Right-clicking a search result and selecting Go
To places your cursor in the callback function.

7-17

7 App Programming

Deleting Callbacks

Delete a callback by right-clicking the callback in the Callbacks tab of the Code Browser and
selecting Delete from the context menu.

CODE BROWSER

Callbacks | Functions | Properties
Search P\ ga

starfupFon
StopButtonPushed

Delete Delete @

Fename F2
Insert at Cursor
Go To Ctrl+C

Example: App with a Slider Callback

This app contains a gauge that tracks the value of a slider as the user moves the thumb. The
ValueChangingFcn callback for the slider gets the current value of the slider from the event
argument. Then it moves the gauge needle to that value.

(4] Track Slider — | Py

0 20 40 60 80 100

See Also

Related Examples
. “Share Data Within App Designer Apps” on page 7-23

7-18

Write Callbacks in App Designer

“Use One Callback for Multiple App Designer Components” on page 7-28
“Write Callbacks for Apps Created Programmatically” on page 11-2

7-19

7 App Programming

Reuse Code Using Helper Functions

7-20

Helper functions are MATLAB functions that you define in your app so that you can call them at
different places in your code. For example, you might want to update a plot after the user changes a
number in an edit field or selects an item in a drop-down list. Creating a helper function allows you to
single-source the common commands and avoid having to maintain redundant code.

There are two types of helper functions: private functions, which you can call only inside your app,
and public functions, which you can call either inside or outside your app. Private functions are
commonly used in single-window apps, while public functions are commonly used in multiwindow

apps.
Create a Helper Function

Code View provides a few different ways to create a helper function:

* Expand the drop-down menu from the bottom half of the Function button in the Editor tab.
Select Private Function or Public Function.

[
% @l 9 O GoTo v Comment
1 -

Funcfion Property App Input L4 Find = Indent
= = Arguments

Private Function
Private functions can be called within the app only %

E Public Function
Public functions can be called inside and oulzside of the app

Chiore——roporoc

Select the Functions tab in the Code Browser, expand the drop-down list on the % ™/ button,
and select Private Function or Public Function.

CODE BROWSER

Callbacks | Functions | Properties

==l

Add a funclion to organize your code into E:}I Private Function I},
helper or utility functions. Call the function Private functions can be called within the app only
th app as the first input argument

Public Function
Public functions can be called inside and oulside of the app

When you make your selection, App Designer creates a template function and places your cursor in
the body of that function. Then you can update the function name and its arguments, and add your
code to the function body. The app argument is required, but you can add more arguments after the
app argument. For example, this function creates a surface plot of the peaks function. It accepts an
additional argument n for specifying the number of samples to display in the plot.

Reuse Code Using Helper Functions

methods (Access = private)

function updateplot(app,n)
surf(app.UIAxes,peaks(n));
colormap(app.UIAxes,winter);
end

end

Call the function from within any callback. For example, this code calls the updateplot function and
specifies 50 as the value for n.

updateplot(app,50);

Managing Helper Functions

Managing helper functions in the Code Browser is similar to managing callbacks. You can change
the name of a helper function by double-clicking the name in the Functions tab of the Code
Browser and typing a new name. App Designer automatically updates all references to the function
when you change its name.

If your app has numerous helper functions, you can quickly search and navigate to a specific function
by typing part of the name in the search bar at the top of the Functions tab. After you begin typing,
the Functions tab clears, except for the items that match your search.

CODE BROWSER

Callbacks | Functions | Properties

plot x ||gp|

updateplot{app, n)

Click a search result to scroll the function into view. Right-clicking a search result and selecting Go
To places your cursor in the function.

To delete a helper function, select its name in the Functions tab and press the Delete key.

Example: Helper Function that Initializes Plots and Displays Updated
Data

This app shows how to create a helper function that initializes two plots and updates one of them in a
component callback. The app calls the updateplot function at the end of the StartupFcn callback
when the app starts up. The UITableDisplayDataChanged callback calls the same function to
update one of the plots when the user sorts columns or changes a value in the table.

7-21

7 App Programming

4\ Blood Pressure Analyisis

Original Data
o .

. Updateij.f_‘.[llata

7-22

H] - |\

S = G |

w w |

2 ¢ I

o n " \

T 9 oL

(=] _G \ ~ — |

m m 1] Er—n |

- o 7 \

3 ¥

(1] _E L

=] . . . |

25 30 35 40 45 25 35 40 45 30
Age Age
Age Blood Pressure Smoker Health Status ti
25 127 T4] Foor % -
27 123 70 Fair
28 115 78] Excellent
M 118 a6] Excellent
32 124 a5 Excellent
33 130 a8 Good
36 114 79] Good -
See Also

Related Examples
“Write Callbacks in App Designer” on page 7-15

“Create Multiwindow Apps in App Designer” on page 7-11

Share Data Within App Designer Apps

Share Data Within App Designer Apps

Using properties is the best way to share data within an app because properties are accessible to all
functions and callbacks in an app. All UI components are properties, so you can use this syntax to
access and update UI components within your callbacks:

app.Component .Property

For example, these commands get and set the Value property of a gauge. In this case, the name of
the gauge is PressureGauge.

X = app.PressureGauge.Value; % Get the gauge value
app.PressureGauge.Value = 50; % Set the gauge value to 50

However, if you want to share an intermediate result, or data that multiple callbacks need to access,
then define a public or private property to store your data. Public properties are accessible both
inside and outside of the app, whereas private properties are only accessible inside of the app. Code
View provides a few different ways to create a property:

* Expand the drop-down menu from the bottom half of the Properties button in the Editor tab.
Select Private Property or Public Property.

o

L
@: @: . I:">|] GoTo = Comment ik

Function @ Property App Input ‘4 Find - Indent |: HNE
- ¥ Arguments —

Enat

INE .
Private Property
Private properties store data to be shared within the app only L\}

3ER Public Property
Public properties store data to be shared inside and outside of the app
ictions | P,

Click on the Properties tab in the Code Browser, expand the drop-down list on the % ™/ button,
and select Private Property or Public Property.

CODE BROWSER

Callbacks | Functions | Properties

==l

Add a property to create a variable to store and Private Property L\}
share data between calbacks and functions. Private properties store data to be shared within the app only
Specify the property name with the prefic app - g

access the property value: Public Property
E'I}I Public properties store data to be shared inside and cutside of the app

After you select an option to create a property, App Designer adds a property definition and a
comment to a properties block.

7-23

7 App Programming

7-24

properties (Access = public)
Property % Description
end

The properties block is editable, so you can change the name of the property and edit the comment
to describe the property. For example, this property stores a value for average cost:

properties (Access = public)
X % Average cost
end

If your code needs to access a property value when the app starts, you can initialize its value in the
properties block or in the startupFcn callback.

properties (Access = public)
X =5; % Average cost
end

Elsewhere in your code, use dot notation to get or set the value of a property:

Get the value of X

y app.X
a = 5; Set the value of X

pp.X

[
“©
[

“©

’

Example: Share Plot Data and a Drop-Down List Selection

This app shows how to share data in a private property and a drop-down list. It has a private property
called Z that stores plot data. The callback function for the edit field updates Z when the user
changes the sample size. The callback function for the Update Plot button gets the value of Z and
the colormap selection to update the plot.

Share Data Within App Designer Apps

4| Configure Plot — O ot

Sample Size 10 4

| 35|
= =

Colormap

| Parula | oy
=5 J

| Update Plot |
—_— =10 .

40
40
20
20
0O 0
See Also

Related Examples
. “Write Callbacks in App Designer” on page 7-15
. “Create Multiwindow Apps in App Designer” on page 7-11

7-25

7 App Programming

Compatibility Between Different Releases of App Designer

7-26

Starting in R2018a, the apps you save in App Designer have a new format. This new file format might
impact your ability to edit newer apps in previous releases, but it has no impact on your ability to run
them in previous releases.

If you try to edit an app, created in R2018a or later, in an earlier release of App Designer, the new
format is not recognized after saving your changes. You see a message such as this.

App Designer 4

This app was created in a newer version of App
Designer and cannot be opened for editing.

L oK |

To enable editing of newer apps in a previous release, save the app in the release-specific format.
Select Save > Save Copy As from any of the tabs in the toolstrip.

oo RN

He e @

Save | Callback Function Property

- - -

B save Cirlss |_INSERT

Save 4s..,

Save C As..
(Gl Save Copy As bﬁ Properties

4, Export to.m File... EI =

In the Save Copy As window, select a type from the Save as Type drop-down list.

Compatibility Between Different Releases of App Designer

4 Save Copy As

& « 4 Bl » ThisPC » OSDisk (C:)
Organize = Mew folder
From Leah
ref
& OneDrive

File name: | mivapp.milapp

Save as type:

Hide Folders

"~

x
v Search OSDisk (C o
Mame O
inetpub
Intel W

MATLAE App (*.miapp)

MATLAE App (*.mlapp)
MATLAB R2017a App (".mlapp)
MATLAE R20N6b App (".miapp)
All Files (*,*)

Save Copy As Versus Save As

The Save Copy As and Save As options serve different purposes, and their behavior is also different.

» To save your app in a format that can be edited in earlier releases, use Save Copy As. When you
use this option, App Designer saves the copy of the app in the specified folder, but it does not

replace the app in your current session.

» To save a copy of your app that is editable only with the current release, use Save As. When you
use this option, App Designer saves the copy of the app in the specified folder and replaces the
app in your current session.

Opening Apps for Editing in a Newer Release

If you open an app for editing that was created in a previous release, App Designer updates the app,
and displays a message such as this one.

This app was created in MATLAE R2020a. The generated code has been updated for R2020h.

See Also
appdesigner

7-27

7 App Programming

Use One Callback for Multiple App Designer Components

7-28

Sharing callbacks between components is useful when you want to offer multiple ways of doing
something in your app. For example, you might want your app respond the same way when the user
clicks a button or presses the Enter key in an edit field.

Example of a Shared Callback

This example shows how to create an app containing two Ul components that share a callback. The

app

displays a contour plot with the specified number of levels. When the user changes the value in

the edit field, they can press Enter or click the Update Plot button to update the plot.

eeeeee

In App Designer, drag an Axes component from the Component Library onto the canvas. Then
make these changes:

* Double-click the title, and change it to Select Contours of Peaks Function.
* Double-click the X and Y axis labels, and press the Delete key to remove them.

Drag an Edit Field (Numeric) component below the axes on the canvas. Then make these
changes:

* Double-click the label next to the edit field and change it to Levels:.
* Double-click the edit field and change the default value to 20.

Drag a Button component next to the edit field on the canvas. Then double-click its label and
change it to Update Plot.

Add a callback function that executes when the user clicks the button. Right-click the Update
Plot button and select Callbacks > Add ButtonPushedFcn callback.

App Designer switches to the Code View. Paste this code into the body of the
UpdatePlotButtonPushed callback:

Z = peaks(100);
nlevels = app.LevelsEditField.Value;
contour(app.UIAxes,Z,nlevels);

Next, share the callback with the edit field. In the Component Browser, right-click the
app.LevelsEditField component and select Callbacks > Select existing callback.... When
the Select Callback Function dialog box displays, select UpdatePlotButtonPushed from the
Name drop-down menu.

Use One Callback for Multiple App Designer Components

Select Callback Function

Callback: | ValueChangedFcn - |

Mame: | UpdatePlotButtonPushed - |

[OK]| Cancel |

Sharing this callback allows the user to update the plot after changing the value in the edit field
and pressing Enter. Alternatively, they can change the value and press the Update Plot button.

7 Next, set the axes aspect ratio and limits. In the Component Browser, select the app.UIAxes
component. Then, make the following changes in the Inspector tab:

* Set PlotBoxAspectRatioto 1,1, 1.
* Set XLim and YLim to 0, 100.
8 Click Run to save and run the app.

>

Run

Change or Disconnect a Callback

To assign a different callback to a component, select the component in the Component Browser.
Then click the Callbacks tab and select a different callback from the drop-down menu. The drop-
down displays only the existing callbacks.

7-29

7

App Programming

7-30

COMPONENT BROWSER

Search P

- E, peaksContourLevels
+ app.UIFigure
app.UlAxes
app.LevelsEditField
app.UpdatePlotButton

app.Slider

Inspector | Callbacks

ValueChangedFen | UpdatePlotButtonP... | v | &

=no callback:=

UpdatePlotButtonPushed

SlidervalueChanged QJ

To disconnect a callback that is shared with a component, select the component in the Component
Browser. Then click the Callbacks tab and select <no callback> from the drop-down menu.
Selecting this option only disconnects the callback from the component. It does not delete the
function definition from your code, nor does it disconnect the callback from any other components.
After you disconnect a callback, you can create a new callback for the component or leave the
component without a callback function.

To delete a callback function definition from your code, go to the Callbacks tab in the Code Browser
and right-click the callback you want to remove. Then, select Delete from the context menu.

See Also

Related Examples
. “Write Callbacks in App Designer” on page 7-15

App Designer Examples

8 App Designer Examples

App that Calculates and Plots Data Based on Numerical Input

8-2

This app shows how to use numeric edit fields to create a simple mortgage amortization calculator. It
includes the following components to collect user input, calculate monthly payments, and plot the
principal and interest amounts over time:

* Numeric edit fields — allow users to enter values for the loan amount, interest rate, and loan
period. MATLAB® automatically checks to make sure the values are numeric and within the range

specified by the app. A fourth numeric edit field displays the resulting monthly payment amount
based on the inputs.

* Push button — executes a callback function to calculate the monthly payment value.
* Axes — used to plot the principal and interest amounts versus mortgage installment.

Y Martgage Calculator - O *

Principal and Interest

1500
Principy
Loan Amouni 300000 barast
1000
Interest Rate % 4 =
g -
=
Lean Period (Years) 0 E00}
Monthly Payment 143225 -
0 100 200 300
Tima (Months)
See Also
UIAxes

Related Examples
. “Write Callbacks in App Designer” on page 7-15

App with Auto-Reflow That Updates Plot Based on User Selections

App with Auto-Reflow That Updates Plot Based on User

Selections

This app shows how to define controls and tabs within the panels of an app with auto-reflow. The
controls are in an anchored panel on the left. The right panel that reflows contains two tabs. One tab
displays a chart and user interface components for adjusting the chart. The other tab contains a table
with the data used to make the chart. User selections update both the plot and the table. The app
responds to resizing by automatically growing, shrinking, and reflowing the app content.

The app includes these components:

* Check boxes — used to update the plot and table when the user selects or clears a check box.

* Switch — used to toggle the data that is visualized in the chart

* Button group containing radio buttons — used to manage exclusive selection of radio buttons.
When the user selects a radio button, the button group executes a callback function to update the
plot with the appropriate data.

» Slider — used to adjust histogram bin width. This slider only appears when the Histogram
plotting option is selected in the button group.

» Table — used to view the data associated with the chart.

4. Patients Display

Data Selection

Location

Hospital Name | All

Gender

| Malg

| Female

Smoker

| Yes

v | No

X
Plot Data
Blood Pressure
Systolic (J Diastolic
140 T .
O Q) O &
O 0 ~ OH l:}

130} %5 D0 0
. g 9 o 'Ei;;:,
= L
- S g
IR R

IS B # e C [#]
= S O
\d:‘l'}\ = -
110 | C o
100 120 140 160 180 220
Weight

Flotting Oplions
=) Scatter

Histogram

See Also
Table | UlAxes

Related Examples

. “Write Callbacks in App Designer” on page 7-15

& Pabents Dugley o b

Data Selection

Locaton

Hazpis Mame Al -

Gent

o Wi

o Fumas

Sz

o s

8-3

8 App Designer Examples

App that Uses Grid Layout to Manage Component Positions
and Resizing

8-4

This app shows how to use a grid layout manager to control the alignment and resizing of knobs when
the app is resized. The app also uses the following components to gather user input and plot the
resulting wave form:

* Numeric edit fields — allow users to enter the pulse frequency and length. MATLAB®
automatically checks to make sure the values are numeric and within the range specified by the
app.

* Switches — allow users to control automatic plot updates and toggle between plots in the time
and frequency domains.

* Drop-down menu — allows users to select from a list of pulse shapes, such as Gaussian, sinc, and
square.

* Knobs — allow users to modify the pulse by specifying a window function, modulating the signal,
or applying other enhancements.

wn Canpawtor
Frmguency) Aoits Update oFf [Puité Fussa S{aline-

Sl Lty {8

Edge iy o tan

See Also

Functions
uigridlayout

Properties
UlAxes

Related Examples
. “Write Callbacks in App Designer” on page 7-15

App That Displays Data in a Hierarchy Using Tree

App That Displays Data in a Hierarchy Using Tree

This app shows how to add a tree to an App Designer app. The app selects data from patients.xls
and displays it in a hierarchy using a tree. The tree contains three nodes that display hospital names.
Each hospital node contains nodes that display patient names. When the user clicks a patient name in
the tree, the Patient Information panel displays data such as age, gender, and health status. When
the user edits the patient data, the app asks the user to confirm the change and then stores the
change in the table variable.

In addition to the tree and Patient Information panel, this app also contains the following Ul
components:

* Read-only text field — Used to display the patient’s name

* Numeric edit field — Used to display and accept changes to the patient’s age

* Drop-down list — Used to display and accept changes to the patient’s gender and health status
* Check box — Used to display and accept changes to the patient’s smoking history

* Confirmation dialog box — Used to confirm changes to patient data

4. Patient Medical Survey - a >
Select Patient by Location Patient Information
= County General Hospdal Demographics
| Stewart
Ramiraz Mame | Stewar
Hughes
Diaz Age | 49
’'s M
v 5t Mary's Medical Center Gender | Male -
¥ VA Hospital
Self-Assessment
Health Status | Poor b
| Smoker
See Also

readtable | table | uitree | uitreenode

Related Examples
. “Add UI Components to App Designer Programmatically” on page 5-20

8 App Designer Examples

Create App that Uses Multiple Axes to Display Results of Image
Analysis

This app shows how to configure multiple axes components in App Designer. The app displays an
image in one axes component, and displays histograms of the red, green, and blue pixels in the other
three.

This example also demonstrates the following app building tasks:

* Managing multiple axes

* Reading and displaying images

* Browsing the user’s file system using the uigetfile function

» Displaying an in-app alert for invalid input (in this case, an unsupported image file)
* Writing a StartupFcn callback to initialize the app with a default image

4 |mage Histagrams - =

0 128 255
Intanssty

=10 Green

0 128 255
Intensity

= {0t Blus

Pradefinad images | Peppers -

Load Custom Image

0 128 255
Intensity

See Also

Functions
imagesc | imread | uialert

Properties
UlAxes

8-6

Create Polar Axes Programmatically in an App

Create Polar Axes Programmatically in an App

This app shows how to display a plot by creating the axes programmatically before calling a plotting
function. In this case, the app plots a polar equation using the polaraxes and polarplot functions.

When the user changes the value of a or b, or when they select a different line color, the plot updates
to reflect their changes.

This example also demonstrates these app building concepts:

Creating different types of axes programmatically to display plots that uiaxes does not support
* Calling a plotting function in App Designer

* Sharing a callback with multiple components

* Displaying Unicode® characters in a label

4 Polar Plot

r=(1+sin(ab))wb
. 5 150 (fﬁ?\ 30

Blue Line v
210

N
300

270

240

See Also
polaraxes | polarplot

Related Examples
. “Display Graphics in App Designer” on page 4-12

8 App Designer Examples

Create App with a Table That Can Be Sorted and Edited
Interactively

This app shows how to display data in a table UI component. The app loads a spreadsheet into a table
array when the app starts up. Then it displays and plots a subset of the data from the spreadsheet.
One of the plots updates when the user edits values or sorts columns in the table Ul component at

run time.
This example demonstrates the following app building tasks:

Displaying the contents of a table array in a table UI component
Enabling some of the interactive features of a table Ul component

L[]
4| Blood Pressure Analyisis — O *
_ Original Data _ Updated Data
2 W ¥ = " ¥
2 I : 2 ¥
E an /\ | I'I | II| I'. g ap ,u'l e, III I,l lI ,'II I'.
o /)l] I| | II I|I 1 o e | | II { |
-g s d |I = / -g i 4 II g |II I'-
(=] Sl:l - | Ill'- 'I 1'-. = gl:l ‘-/ '} II III". |I -'\.'
= S o | 1 \ I|I e o / ! y | b —h I|' \._I
270 [¥ 3 70 .
= =
O 0
25 30 35 40 45 50 25 30 35 40 45 50
Age Age
Age Blood Pressure Smoker Health Status ti
25 127 74 Poor I}
27 123 79 v Fair
28 115 T8 Excellent
31 113 86 Excellent
32 124 a5 v Excellent
33 130 88 L Good
36 114 74 Good -

See Also
readtable | table | uitable

Related Examples
“Table Array Data Types in App Designer Apps” on page 5-15

8-8

Create App with a Table That Can Be Sorted and Edited Interactively

“Programmatic App that Displays a Table” on page 14-2

8-9

8 App Designer Examples

Create App with Timer Object Configured Programmatically

This app shows how to create a timer object in App Designer that executes a function at regular time
intervals. In this case, the app generates random data every second and plots the result.

This example also demonstrates the following app building tasks:

Writing a callback for an object created programmatically (in this case, the timer object)
Configuring a timer object to execute its callback at regular intervals

Starting the timer when the user clicks the Start button

Stopping the timer when the user clicks the Stop button

Deleting the timer when the app closes

4 Random Number Generator - X

Fandom number calculated

Qutput of rand

Calculated Every Second

1 T T T T T

=
52
T
L

06 .

=
%]

T
1

60 50 40 30 20 10 0
Seconds

8-10

See Also

Functions
memory | timer

Create App with Timer Object Configured Programmatically

Properties
UlAxes

8-11

8 App Designer Examples

Create App with Timer Object that Queries Website Data

8-12

This app shows how to create a timer object in App Designer that executes a function at regular time
intervals. In this case, the app queries the wind speed from a web site every five seconds and plots
the returned value.

This example also demonstrates the following app building tasks:

* Writing a callback for an object created programmatically (in this case, the timer object)
* Configuring a timer object to execute its callback at regular intervals

» Starting the timer when the user clicks the Start button

* Stopping the timer when the user clicks the Stop button

* Deleting the timer when the app closes

+ Wind Speed - (m] X

Wind Speed in Natick, MA
Measured Every 5 Saconds

95

o] Q o] 2

Speed (mph)
0

0 i X i
09-58:55 095811 09:59:27 09:59:43 09:59:58
Time Jun 14, 2018

Stant Stop

See Also

Classes
timer

Functions
webread

Properties
UlAxes

Share Data in Multiwindow Apps

Share Data in Multiwindow Apps

This example shows how to pass data from one app to another. This multiwindow app consists of a
main app that calls a dialog box app with input arguments. The dialog box displays a set of options for

modifying aspects of the main app. When the user closes it, the dialog box sends their selections back
to the main app.

This example demonstrates the following app building tasks:

Calling an app with input arguments

Calling an app with a return argument that is the app object

Passing values to an app by calling a public function in the app

Writing CloseRequestFcn callbacks to perform maintenance tasks when each app closes

4 O plions -] *

Sample Sze 35

Colormap | Parula A

oK

See Also

Related Examples

“Create Multiwindow Apps in App Designer” on page 7-11
“Startup Tasks and Input Arguments in App Designer” on page 7-8
“Reuse Code Using Helper Functions” on page 7-20

8-13

8 App Designer Examples

Display HTML Elements Styled by a Cascading Style Sheet

This app shows how to reference supporting files from your HTML file, like a Cascading Style Sheet
and an image used by the CSS file. This app also demonstrates how to plot data in MATLAB® that is
generated in JavaScript® when an HTML button is clicked.

4 Ul Figure — O b
Qﬂ Generate Random Number
3
{Im
R
Random Numbers
100
* *
* * *
a0t
* * *
o 0T *
=
L]
= *
40 * *
* % *
20} <
* #*
l:l i i i * i
0 5 10 15 20
Mumber of Events

See Also

Functions
uihtml

Properties
HTML Properties

More About
. “Create HTML File That Can Trigger or Respond to Data Changes” on page 5-23

8-14

Keyboard Shortcuts

9 Keyboard Shortcuts

App Designer Keyboard Shortcuts

9-2

In this section...

“Component Browser Shortcuts” on page 9-2
“Design View Shortcuts” on page 9-3
“Code View Shortcuts” on page 9-7

“Shortcuts Available Throughout App Designer” on page 9-2

Shortcuts Available Throughout App Designer

Action Key or Keys
Run the active app. F5

Save the active app. Ctrl+S

Save the active app, allowing you to specify a Ctrl+Shift+S
new file name. (Save as)

Open a previously saved app. Ctrl+0

Redo an undone modification, returning it to the
changed state.

Ctrl+Y or, in the design area only, Ctrl+Shift+Z

Undo a modification, returning it to the previous |Ctrl+Z
state.
Alternate between design and code view. Shift + F7

If debugging is in progress, this shortcut does not
change the view.

Quit App Designer.

Ctrl+Q

Component Browser Shortcuts

These shortcuts are available in the Component Browser, in both code view and design view

Action

Key or Keys

Select multiple components.

Hold down the Ctrl key as you click each
component that you want to include in the
multiselection.

Deselect a component from multiselection.

Hold down the Ctrl key as you click each
component that you want to remove from a
multiselection.

Navigate from clicked component to the previous
or next component listed in the code browser.

Up Arrow and Down Arrow

Edit code name of clicked component in the code
browser.

F2 on Windows® and Linux®

Enter on Mac

App Designer Keyboard Shortcuts

Design View Shortcuts

These shortcuts are available from the App Designer design view only.

* “Add Component Shortcuts” on page 9-3

* “Component, Group, and Text Selection Shortcuts” on page 9-3

* “Group and Ungroup Components Shortcuts” on page 9-4

* “Component and Group Move Shortcuts” on page 9-4

* “Component Resize Shortcuts” on page 9-4

* “Component Copy, Duplicate, and Delete Shortcuts” on page 9-4

* “Design Area Grid Shortcuts” on page 9-5

* “Component Alignment Shortcuts” on page 9-5

* “Change Font Characteristics Shortcuts” on page 9-5

* “Menu Component Shortcuts” on page 9-6
* “Tab Component Shortcuts” on page 9-6
» “Navigate Canvas Shortcuts” on page 9-6

Add Component Shortcuts

Action

Shortcut

Add component and associated label (if any) to
canvas.

Click the component and hold down the mouse
key to drag the component from the Component
Library on the left into the design area.

Add component only to canvas.

Hold down the Ctrl key, click the component, and
drag it from the Component Library on the left
into the design area.

Component, Group, and Text Selection Shortcuts

exception. If any of the components are grouped,
the group is selected, not the individual
components within the grouping.

Action Key or Keys
Move the selection to the next component, or Tab
container in the design area tab key navigation

sequence.

Move the selection to the previous component or |Shift+Tab
container in the design area tab key navigation

sequence.

Selects all components on the canvas, with one |Ctrl+A

Clear a component selection. Press again to
reselect the component.

Shift+Click or Ctrl+Click

In the property editor or in-place editing, select
all text in a text input field.

Ctrl+A

Select group containing a component.

Alt+Click a component

9-3

9 Keyboard Shortcuts

9-4

Group and Ungroup Components Shortcuts

Select the components that you want to group, and then press Ctrl+G. All components to be grouped

must have the same parent component.

Action Key or Keys
Group selected components. Ctrl+G
Ungroup components in selected group. Ctrl+Shift+G

Component and Group Move Shortcuts

This table summarizes the keyboard shortcuts for moving selected components and groups.

Action Key or Keys

Move down 1 pixel. Down Arrow

Move left 1 pixel. Left Arrow

Move right 1 pixel. Right Arrow

Move up 1 pixel. Up Arrow

Move down 10 pixels. Shift+Down Arrow
Move left 10 pixels. Shift+Left Arrow
Move right 10 pixels. Shift+Right Arrow
Move up 10 pixels. Shift+Up Arrow
Cancel an in-progress operation. Escape
Component Resize Shortcuts

Action Key

Resize component while maintaining aspect ratio.

Press and hold down the Shift key before you
begin to drag the component resize handle.

Resize component while keeping center location
unchanged.

Press and hold down the Ctrl key before you
begin to drag the component resize handle.

Resize component while maintaining aspect ratio
and keeping center location unchanged.

Press and hold down the Ctrl and Shift keys
before you begin to drag the component resize
handle.

Cancel an in-progress resize operation.

Escape

Component Copy, Duplicate, and Delete Shortcuts

Action

Key or Keys

Copy selected components and groups to the
clipboard.

Ctrl+C

Duplicate the selected components and groups
(without copying them to the clipboard).

Ctrl+D, or hold down the Ctrl key and drag the
component.

Cut the selected components and groups from the
design area onto the clipboard.

Ctrl+X

App Designer Keyboard Shortcuts

Action

Key or Keys

Delete the selected components and groups from
the design area.

Backspace or Delete

Paste components and groups from the clipboard
into the design area or a container component
(panel, tab, or button group). Radio buttons and
toggle buttons can only be pasted into radio
button groups or toggle button groups,
respectively.

Ctrl+V

Design Area Grid Shortcuts

Action

Keys

Toggle grid on and off.

Alt+G

Toggle snap to grid on and off.

Alt+P

Increase grid interval by 5 pixels.

Alt+Page Up

Decrease grid interval by 5 pixels.

Alt+Page Down

Component Alignment Shortcuts

Action Keys

Align selected components and groups on their |Ctrl+Alt+1
left edges.

Align selected components and groups on their |Ctrl+Alt+2
horizontal centers.

Align selected components and groups on their |Ctrl+Alt+3
right edges.

Align selected components and groups on their |Ctrl+Alt+4
top edges.

Align selected components and groups on their |Ctrl+Alt+5
vertical middle.

Align selected components and groups on their |Ctrl+Alt+6
bottom edges.

Change Font Characteristics Shortcuts

Action Key or Keys
Toggle the font weight of selected components Ctrl+B

and their children between normal and bold.

Toggle the font angle of selected components and
their children between normal and italic.

Ctrl+1

9 Keyboard Shortcuts

9-6

Action Key or Keys

Decrease the value of the FontSize property of |Ctrl+]

the selected components and their children by

one step.

Font size steps are: 8, 9, 10, 11, 12, 14, 16, 18,

20, 22, 24, 26, 28, 36, 48, 72.

Increase the value of the FontSize property of |Ctrl+]

the selected components and their children by

one step.

Font size steps are: 8, 9, 10, 11, 12, 14, 16, 18,

20, 22, 24, 26, 28, 36, 48, 72.

Menu Component Shortcuts

Action Key or Keys

Add a menu item below the current item. The Enter

new menu item appears at the end of the list.

Add an item to the right of selected item. Shift+Enter

Delete the current item. Delete

Commit text changes and navigate to the next Any Arrow key

item.

Select the first or last item at the level of the Home

selected item. End

Move the selected child menu item higher or Ctrl+Shift+Up Arrow
lower in the list. Ctrl+Shift+Down Arrow
Move the selected top-level menu item to the left |Ctrl+Shift+Left Arrow
or right. Ctrl+Shift+Right Arrow

Move the selected item to the beginning or end of

Ctrl+Shift+Home

the list. Ctrl+Shift+End

Tab Component Shortcuts

Action Key or Keys

Move the selected tab to the left or right. Ctrl+Shift+Left Arrow
Ctrl+Shift+Right Arrow

Move the selected tab to the beginning or end. Ctrl+Shift+Home
Ctrl+Shift+End

Navigate Canvas Shortcuts

Action Shortcut

Zoom in on the canvas. Ctrl+Plus

Zoom out on the canvas. Ctrl+Minus

Reset the canvas zoom to default. Ctrl+Alt+0

App Designer Keyboard Shortcuts

Action Shortcut

Pan on the canvas. Click and drag with the middle mouse button, or

hold Space while clicking and dragging with the
left mouse button.

Code View Shortcuts

These shortcuts are available only from the App Designer code view, within the editor.

“Code Indenting Shortcuts” on page 9-7

“Cut, Copy, and Paste Code Shortcuts” on page 9-7

“Find Code Shortcuts” on page 9-7

“Code Browser Shortcuts” on page 9-7

“Code View Zoom Shortcuts” on page 9-8

“Other App Designer Code Editor Shortcuts” on page 9-8

Code Indenting Shortcuts

Action Key or Keys
Smart indent selected code. Ctrl+1
Increase indent on current line of code or Ctrl+1

currently selected code.

Decrease indent on current line of code or Ctrl+[
currently selected code.

Cut, Copy, and Paste Code Shortcuts

Action Key or Keys
Cut selected code. Ctrl+X
Copy selected code. Ctrl+C
Paste selected code. Ctrl+V

Find Code Shortcuts

Action Key or Keys
Find. Ctrl+F

Find next. F3

Find previous. Shift+F3
Find selection. Ctrl+F3

Code Browser Shortcuts

Action Key or Keys
Delete callback. Delete
Rename callback. F2

9 Keyboard Shortcuts

9-8

Action Key or Keys
Bring callback to focus and insert cursor. Ctrl+D
Code View Zoom Shortcuts

Action Shortcut
Zoom in on code editor. Ctrl+Plus
Zoom out on code editor. Ctrl+Minus
Reset code editor zoom to default. Ctrl+Alt+0
Other App Designer Code Editor Shortcuts

Action Key or Keys
Add comment to selected code. Ctrl+R
Remove comment from selected code. Ctrl+T
Evaluate selection. F9

Open selection. Ctrl+D

Go to specified line number. Ctrl+G

Set or clear breakpoint. F12

Create Uls Programmatically

“Lay Out a Ul Programmatically” on page 10-2

“Write Callbacks for Apps Created Programmatically” on page 11-2
“Create and Run a Simple figure-Based App” on page 2-2
“Callbacks for Specific Components” on page 19-14

“Share Data Among Callbacks” on page 12-2

Lay Out a Programmatic Ul

* “Lay Out a Ul Programmatically” on page 10-2
* “DPI-Aware Behavior in MATLAB” on page 10-10

10 Lay Out a Programmatic Ul

Lay Out a Ul Programmatically

10-2

You can adjust the size and location of components, and manage front-to-back order of grouped
components by setting certain property values. This topic explains how to use these properties to get
the layout you want. It also explains how to use the SizeChangedFcn callback to control the UI's
resizing behavior.

Component Placement and Sizing

A Ul layout consists of a figure and one or more components that you place inside the figure.
Accurate placement and sizing of each component involves setting certain properties and
understanding how the inner and outer boundaries of the figure relate to each other.

Location and Size of Outer Bounds and Drawable Area

The area inside the figure, which contains the UI components, is called the drawable area. The
drawable area excludes the figure borders, title bar, menu bar, and tool bars. You can control the
location and size of the drawable area by setting the Position property of the figure as a four-
element row vector. The first two elements of this vector specify the location. The last two elements
specify the size. By default, the figure’s Position values are in pixels.

This command creates a figure and sets the Position value. The left edge of the drawable area is
258 pixels from the left side of the screen. Its bottom edge is 132 pixels up from the bottom of the
screen. lts size is 560 pixels wide by 420 pixels high:

f = figure('Position',[258 132 560 420]);

Lay Out a Ul Programmatically

4| Figure 1 — O X

File Edit View Insert Tools Desktoep Window Help o

Odde @ 0&8| K [E

420

258

b 4
F Y
Y

560 132

You can query or change the outer bounds of the figure by using the QuterPosition property. The
region enclosed by the outer bounds of the figure includes the figure borders, title bar, menu bar, and
tool bars. Like the Position property, the QuterPosition is a four element row vector:

f.OuterPosition
ans =
250 124 576 512
The left outer edge of this figure is 250 pixels from the left side of the screen. Its bottom outer edge is

124 pixels up from the bottom of the screen. The area enclosed by the outer bounds of the figure is
576 pixels wide by 512 pixels high.

10-3

10 Lay Out a Programmatic Ul

. re
4. Figure 1 — O X
File Edit View Insert Tools Desktoep Window Help o
512
< >ie kJ
250 576 124

Explicitly changing the Position or OuterPosition causes the other property to change. For
example, this is the current Position value of f:

f.Position
ans =
258 132 560 420
Changing the OuterPosition causes the Position to change:

f.0uterPosition = [250 250 490 340];
f.Position

ans =

258 258 474 248

Other UI components, such as UIControl, Table, and Panel objects have a Position property,
which you can use to set their location and size.

10-4

Lay Out a Ul Programmatically

Units of Measure

The default units associated with the Position property depend on the component you are placing.
However, you can change the Units property to lay out your Ul in the units of your choice. There are
six different units of measure to choose from: inches, centimeters, normalized, points, pixels, and
characters.

Always specify Units before Position for the most predictable results.
f = figure('Units', 'inches', 'Position',[4 3 6 5]);
Your choice of units can affect the appearance and resizing behavior of the UI:

» Ifyou want the Ul components to scale proportionally with the figure when the user resizes the
figure, set the Units property of the components to 'normalized'.

* UI Components do not scale proportionally inside the figure when their Units property is set to
"inches', 'centimeters', 'points’', 'pixels’', or 'characters’'.

» Ifyou are developing a cross-platform UI, then set the Units property to 'points' or
'characters' to make the layout consistent across all platforms.

Example of a Simple Layout

Here is the code for a simple app containing an axes and a button. To see how it works, copy and
paste this code into the editor and run it.

function myui
% Add the UI components
hs = addcomponents;

% Make figure visible after adding components
hs.fig.Visible = 'on';

function hs = addcomponents
% add components, save handles in a struct
hs.fig = figure('Visible"', 'off"',...
'Resize', 'off', ...
‘Tag', 'fig");
hs.btn = uicontrol(hs.fig, 'Position',[10 340 70 30],...
'String', 'Plot Sine', ...
'Tag', 'button', ...
"Callback',@plotsine);
hs.ax = axes('Parent', hs.fig,...
'"Position',[0.20 0.13 0.71 0.75],...
'Tag', 'ax');
end

function plotsine(hObject,event)
theta = 0:pi/64:6*pi;
y = sin(theta);
plot(hs.ax,theta,y);
end
end

This code performs the following tasks:

* The main function, myui, calls the addcomponents function. The addcomponents function
returns a structure, hs, containing the handles to all the Ul components.

10-5

10 Lay Out a Programmatic Ul

10-6

» The addcomponents function creates a figure, an axes, and a button, each with specific
Position values.

* Notice that the Resize property of the figure is 'off'. This value disables the resizing
capability of the figure.

* Notice that the Visible property of the figure is 'off' inside the addcomponents function.
The value changes to 'on' after addcomponents returns to the calling function. Doing this
delays the figure display until after MATLAB adds all the components. Thus, the resulting Ul
has a clean appearance when it starts up.

* The plotsine function plots the sine function inside the axes when the user clicks the button.

4. Figure 1 - x

File Edit View Inset Teols Desktop Window Help k]

Ocdde | S| 0E kE

Plot Sine
0.9

0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

Managing the Layout in Resizable Uls

To create a resizable UI and manage the layout when the user resizes the window, set the figure’s
SizeChangedFcn property to be a handle to a callback function. Code the callback function to
manage the layout when the window size changes.

If your UI has another container, such as a panel or button group, you can manage the layout of the
container’s child components in a separate callback function that you assign to the SizeChangedFcn
property.

The SizeChangedFcn callback executes only under these circumstances:

* The container becomes visible for the first time.
* The container is visible while its drawable area changes.

* The container becomes visible for the first time after its drawable area changes. This situation
occurs when the drawable area changes while the container is invisible and becomes visible later.

Lay Out a Ul Programmatically

Note Typically, the drawable area changes at the same time the outer bounds change. However,
adding or removing menu bars or tool bars to a figure causes the outer bounds to change while the
drawable area remains constant. Therefore, the SizeChangedFcn callback does not execute when
you add or remove menu bars or tool bars.

This app is a resizable version of the simple app defined in “Example of a Simple Layout” on page 10-
5. This code includes a figure SizeChangedFcn callback called resizeui. The resizeui function
calculates new Position values for the button and axes when the user resizes the window. The
button appears to be stationary when the user resizes the window. The axes scales with the figure.

function myui
% Add the UI components
hs = addcomponents;

% Make figure visible after adding components
hs.fig.Visible = 'on';

function hs = addcomponents
% Add components, save handles in a struct
hs.fig = figure('Visible', 'off"', ...
'Tag', 'fig', ...
'SizeChangedFcn',@resizeui);
hs.btn = uicontrol(hs.fig, 'String',...
'Plot Sine', ...
'Callback',@plotsine, ...
'Tag', 'button');
hs.ax = axes('Parent', hs.fig,...
"Units', 'pixels’', ...
'Tag', 'ax');
end

function plotsine(hObject,event)
theta = 0:pi/64:6*pi;
y = sin(theta);
plot(hs.ax,theta,y);

end

function resizeui(hObject,event)

% Get figure width and height
figwidth = hs.fig.Position(3);
figheight = hs.fig.Position(4);

% Set button position

bheight = 30;

bwidth = 70;

bbottomedge = figheight - bheight - 50;

bleftedge = 10;

hs.btn.Position = [bleftedge bbottomedge bwidth bheight];

% Set axes position

axheight = .75*figheight;

axbottomedge = max(0,figheight - axheight - 30);

axleftedge = bleftedge + bwidth + 30;

axwidth = max(0,figwidth - axleftedge - 50);

hs.ax.Position = [axleftedge axbottomedge axwidth axheight];

10-7

10 Lay Out a Programmatic Ul

10-8

end
end

The resizeui function sets the location and size of the button and axes whenever the user resizes
the window:

* The button height, width, and left edge stay the same when the window resizes.

* The bottom edge of the button, bbottomedge, allows 50 pixels of space between the top of the
figure and the top of the button.

* The value of the axes height, axheight, is 75% of the available height in the figure.

» The value of the axes bottom edge, axbottomedge, allows 30 pixels of space between the top of
the figure and the top of the axes. In this calculation, the max function limits this value to
nonnegative values.

* The value of the axes width, axwidth, allows 50 pixels of space between the right side of the axes
and the right edge of the figure. In this calculation, the max function limits this value to
nonnegative values.

Notice that all the layout code is inside the resizeui function. It is a good practice to put all the
layout code inside the SizeChangedFcn callback to ensure the most accurate results.

Also, it is important to delay the display of the entire UI window until after all the variables that a
SizeChangedFcn callback uses are defined. Doing so can prevent the SizeChangedFcn callback
from returning an error. To delay the display of the window, set the Visible property of the figure to
"off'. After you define all the variables that your SizeChangedFcn callback uses, set the Visible
property to 'on"’.

Manage the Stacking Order of Grouped Components

The default front-to-back order, or stacking order, of components in a Ul is as follows:

* Axes and other graphics objects appear behind other components. Ul components and containers
(panels, button groups, and tabs) appear in front of them.

* Ul components and containers appear in the order in which you create them. New components
appear in front of existing components.

You can change the stacking order at any time, but there are some restrictions. Axes and other
graphics objects can stack in any order with respect to each other. However, axes and other graphics
objects cannot stack in front of Ul components and containers. They always appear behind Ul
components and containers.

You can work around this restriction by grouping graphics objects into separate containers. Then you
can stack those containers in any order. To group a graphics object into a container, set its Parent
property to be that container. For example, you can group an axes into a panel by setting the Parent
property of the axes to be the panel.

The Children property of a Panel, ButtonGroup, or Tab object lists the child objects inside the
container according to their stacking order.

Lay Out a Ul Programmatically

See Also

Related Examples

. “Lay Out Apps in App Designer Design View” on page 6-2
. “Manage Resizable Apps in App Designer” on page 6-11

. “DPI-Aware Behavior in MATLAB” on page 10-10

10-9

10 Lay Out a Programmatic Ul

DPI-Aware Behavior in MATLAB

10-10

In this section...

“Visual Appearance” on page 10-10
“Using Object Properties” on page 10-12

“Using print, getframe, and publish Functions” on page 10-13

Starting in R2015b, MATLAB is DPI-aware, which means that it takes advantage of your full system
resolution to draw graphical elements (fonts, Uls, and graphics). Graphical elements appear sharp
and consistent in size on these high-DPI systems:

* Windows systems in which the display dots-per-inch (DPI) value is set higher than 96
* Macintosh systems with Apple Retina displays

DPI-aware behavior does not apply to Linux systems.

Previously, MATLAB allowed some operating systems to scale graphical elements. That scaling helped
to maintain consistent appearance and functionality, but it also introduced undesirable effects.
Graphical elements often looked blurry, and the size of those elements was sometimes inconsistent.

Visual Appearance

Here are the visual effects you might notice on high-DPI systems:

» The MATLAB desktop, graphics, fonts, and most Ul components look sharp and render with full
graphical detail on Macintosh and Windows systems.

DPI-Aware Behavior in MATLAB

R2015a R2015b
4] Figure 1 = B E & Figure 1 = =| =
File Edit View Insert Tools Desktop Window Help - File Edit View Insert Tools Desktop Window Help -
NEde | ARODRL- A DA - NEde A9 LL- 08D

When you create a graphics or Ul object, and specify the Units as 'pixels’, the size of that
object is now consistent with the size of other objects. For example, the size of a push button
(specified in pixels) is now consistent with the size of the text on that push button (specified in
points).

Elements in the MATLAB Toolstrip look sharper than in previous releases. However, icons in the
Toolstrip might still look slightly blurry on some systems.

On Windows systems, the MATLAB Toolstrip might appear larger than in previous releases.

On Windows systems, the size of the Command Window fonts and Editor fonts might be larger
than in previous releases. In particular, you might see a difference if you have nondefault font

sizes selected in MATLAB preferences. You might need to adjust those font sizes to make them
look smaller.

You might see differences on multiple-display systems that include a combination of different
displays (for example, some, but not all of the displays are high-DPI). Graphical elements might
look different across displays on those systems.

10-11

10 Lay Out a Programmatic Ul

10-12

Using Object Properties

These changes to object properties minimize the impact on your existing code and allow MATLAB to
use the full display resolution when rendering graphical elements. All Uls you create in MATLAB are
automatically DPI-aware applications.

Units Property

When you set the Units property of a graphics or Ul object to 'pixels’, the size of each pixel is
now device-independent on Windows and Macintosh systems:

* On Windows systems, 1 pixel = 1/96 inch.
* On Macintosh systems, 1 pixel = 1/72 inch.
* On Linux systems, the size of a pixel is determined by the display DPI.

Your existing graphics and UI code will continue to function properly with the new pixel size. Keep in
mind that specifying (or querying) the size and location of an object in pixels might not correspond to
the actual pixels on your screen.

For example, each screen pixel on a 192-DPI Windows system is 1/192nd of an inch. In this case,
twice as many screen pixels cover the same linear distance as the device-independent pixels do. If
you create a figure, and specify its size to be 500-by-400 pixels, MATLAB reports the size to be 500-
by-400 in the Position property. However, the display uses 1000-by-800 screen pixels to cover the
same graphical region.

Note Starting in R2015b, MATLAB might report the size and location of objects as fractional values
(in pixel units) more frequently than in previous releases. For example, your code might report
fractional values in the Position property of a figure, whereas previous releases reported whole
numbers for that same figure.

Root ScreenSize Property

The ScreenSize property of the root object might not match the display size reported by high-DPI
Windows systems. Specifically, the values do not match when the Units property of the root object is
set to 'pixels'. MATLAB reports the value of the ScreenSize property based on device-
independent pixels, not the size of the actual pixels on the screen.

Root ScreenPixelsPerinch Property

The ScreenPixelsPerInch property became a read-only property in R2015b. If you want to change
the size of text and other elements on the screen, adjust your operating system settings.

Also, you cannot set or query the default value of the ScreenPixelsPerInch property. These
commands now return an error:

get(groot, 'DefaultRootScreenPixelsPerInch')
set(groot, 'DefaultRootScreenPixelsPerInch')

The factory value cannot be queried either. This command returns an error as well:

get(groot, 'FactoryRootScreenPixelsPerInch")

DPI-Aware Behavior in MATLAB

Using print, getframe, and publish Functions
getframe and print Functions

When using the getframe function (or the print function with the - r0 option) on a high-DPI
system, the size of the image data array that MATLAB returns is larger than in previous releases.
Additionally, the number of elements in the array might not match the figure size in pixel units.
MATLAB reports the figure size based on device-independent pixels. However, the size of the array is
based on the display DPI.

publish Function

When publishing documents on a high-DPI system, the images saved to disk are larger than in
previous releases or on other systems.

See Also
Figure | Root

10-13

Code a Programmatic App

11 codea Programmatic App

Write Callbacks for Apps Created Programmatically

11-2

In this section...

“Callbacks for Different User Actions” on page 11-2

“How to Specify Callback Property Values” on page 11-3

Callbacks for Different User Actions

UI and graphics components have certain properties that you can associate with specific callback
functions. Each of these properties corresponds to a specific user action. For example, a uicontrol has
a property called Callback. You can set the value of this property to be a handle to a callback
function, an anonymous function, or a character vector containing a MATLAB expression. Setting this
property makes your app respond when the user interacts with the uicontrol. If the Callback
property has no specified value, then nothing happens when the user interacts with the uicontrol.

This table lists the callback properties that are available, the user actions that trigger the callback
function, and the most common UI and graphics components that use them.

the pointer is on the object.

Callback User Action Components That Use This
Property Property
ButtonDownFcn |End user presses a mouse button while |axes, figure, uibuttongroup,
the pointer is on the component or uicontrol, uipanel, uitable,
figure.
Callback End user triggers the component. For |uicontextmenu, uicontrol, uimenu
example: selecting a menu item,
moving a slider, or pressing a push
button.
CellEditCallba |End user edits a value in a table whose [uitable
ck cells are editable.
CellSelectionC |End user selects cells in a table. uitable
allback
ClickedCallbac |End user clicks the push tool or toggle |uitoggletool, uipushtool
k tool with the left mouse button.
CloseRequestFc |The figure closes. figure
n
CreateFcn Callback executes when MATLAB axes, figure, uibuttongroup,
creates the object, but before it is uicontextmenu, uicontrol,
displayed. uimenu, uipushtool, uipanel,
uitable, uitoggletool, uitoolbar
DeleteFcn Callback executes just before MATLAB |axes, figure, uibuttongroup,
deletes the figure. uicontextmenu, uicontrol,
uimenu, uipushtool, uipanel,
uitable, uitoggletool, uitoolbar
KeyPressFcn End user presses a keyboard key while |figure, uicontrol, uipanel,

uipushtool, uitable, uitoolbar

Write Callbacks for Apps Created Programmatically

Callback User Action Components That Use This
Property Property
KeyReleaseFcn |End user releases a keyboard key while [figure, uicontrol, uitable
the pointer is on the object.
OffCallback Executes when the State of a toggle |uitoggletool
tool changes to 'off"'.
OnCallback Executes when the State of a toggle |uitoggletool
tool changes to 'on"'.
SizeChangedFcn |End user resizes a button group, figure,|figure, uipanel, uibuttongroup
or panel whose Resize property is
‘on'.
SelectionChang |End user selects a different radio uibuttongroup
edFcn button or toggle button within a button
group.
WindowButtonDo |End user presses a mouse button while |[figure
wnFcn the pointer is in the figure window.
WindowButtonMo |End user moves the pointer within the |figure
tionFcn figure window.
WindowButtonUp |End user releases a mouse button. figure
Fcn
WindowKeyPress |End user presses a key while the figure
Fcn pointer is on the figure or any of its
child objects.
WindowKeyRelea |End user releases a key while the figure
seFcn pointer is on the figure or any of its
child objects.
WindowScrollWh |End user turns the mouse wheel while |figure
eelFcn the pointer is on the figure.

How to Specify Callback Property Values

To associate a callback function with a Ul component, set the value of one of the component’s
callback properties to be a reference to the callback function. Typically, you do this when you define
the component, but you can change callback property values anywhere in your code.

Specify the callback property value in one of the following ways:

* “Specify a Function Handle” on page 11-3.

* “Specify a Cell Array” on page 11-4. This cell array contains a function handle as the first
element, followed by and any input arguments you want to use in the function.

* “Specify an Anonymous Function” on page 11-5.

* “Specify a Character Vector Containing MATLAB Commands (Not Recommended)” on page 11-5
Specify a Function Handle

Function handles provide a way to represent a function as a variable. The function must be a local or
nested function in the same file as the app code, or you can write it in a separate file that is on the
MATLAB path.

11-3

11 codea Programmatic App

11-4

To create the function handle, specify the @ operator before the name of the function. For example,
this uicontrol command specifies the Callback property to be a handle to the function
pushbutton callback:

b = uicontrol('Style', 'pushbutton', 'Callback',@pushbutton_callback);

Here is the function definition for pushbutton callback:

function pushbutton callback(src,event)
display('Button pressed');
end

Notice that the function handle does not explicitly refer to any input arguments, but the function
declaration includes two input arguments. These two input arguments are required for all callbacks
you specify as a function handle. MATLAB passes these arguments automatically when the callback
executes. The first argument is the Ul component that triggered the callback. The second argument
provides event data to the callback function. If there is no event data available to the callback
function, then MATLAB passes the second input argument as an empty array. The following table lists
the callbacks and components that use event data.

Callback Property Name Component
WindowKeyPressFcn figure
WindowKeyReleaseFcn

WindowScrollWheel

KeyPressFcn figure, uicontrol, uitable
KeyReleaseFcn figure, uicontrol, uitable
SelectionChangedFcn uibuttongroup
CellEditCallback uitable
CellSelectionCallback

A benefit of specifying callbacks as function handles is that MATLAB checks the function for syntax
errors and missing dependencies when you assign the callback to the component. If there is a
problem in the callback function, then MATLAB returns an error immediately instead of waiting for
the user to trigger the callback. This behavior helps you to find problems in your code before the user
encounters them.

Specify a Cell Array

Use a cell array to specify a callback function that accepts additional input arguments that you want
to use in the function. The first element in the cell array is a function handle. The other elements in
the cell array are the additional input arguments you want to use, separated by commas. The function
you specify must define the same two input arguments as described in “Specify a Function Handle”
on page 11-3. However, you can define additional inputs in your function declaration after the first
two arguments.

This uicontrol command creates a push button and specifies the Callback property to be a cell
array. In this case, the name of the function is pushbutton_callback, and the value of the
additional input argument is 5.

b = uicontrol('Style', 'pushbutton', 'Callback', {@pushbutton callback,5});

Here is the function definition for pushbutton callback:

Write Callbacks for Apps Created Programmatically

function pushbutton callback(src,event,x)
display(x);
end

Like callbacks specified as function handles, MATLAB checks callbacks specified as cell arrays for
syntax errors and missing dependencies when you assign the callback to the component. If there is a
problem in the callback function, then MATLAB returns an error immediately instead of waiting for
the user to trigger the callback. This behavior helps you to find problems in your code before the user
encounters them.

Specify an Anonymous Function

Specify an anonymous function when you want a Ul component to execute a function that does not
support the two arguments that are required for function handles and cell arrays. For example, this
uicontrol command creates a push button and specifies the Callback property to be an
anonymous function. In this case, the name of function is myfun, and its function declaration defines
only one input argument, x.

b = uicontrol('Style', 'pushbutton', 'Callback',@(src,event)myfun(x));
Specify a Character Vector Containing MATLAB Commands (Not Recommended)

You can specify a character vector when you want to execute a few simple commands, but the
callback can become difficult to manage if it contains more than a few commands. The character
vector you specify must consist of valid MATLAB expressions, which can include arguments to
functions. For example:

hb = uicontrol('Style', 'pushbutton',...
'String', 'Plot line',...
"Callback', 'plot(rand(20,3))"');

The character vector, 'plot(rand(20,3))"', is a valid command, and MATLAB evaluates it when
the user clicks the button. If the character vector includes a variable, for example,

"plot(x)"’

The variable x must exist in the base workspace when the user triggers the callback, or it returns an
error. The variable does not need to exist at the time you assign callback property value, but it must
exist when the user triggers the callback.

Unlike callbacks that are specified as function handles or cell arrays, MATLAB does not check
character vectors for syntax errors or missing dependencies. If there is a problem with the MATLAB
expression, it remains undetected until the user triggers the callback.

See Also

Related Examples

. “Callbacks for Specific Components” on page 19-14
. “Share Data Among Callbacks” on page 12-2

. “Interrupt Callback Execution” on page 13-2

. “Anonymous Functions”

. “Write Callbacks in App Designer” on page 7-15

11-5

Manage Application-Defined Data

12 Manage Application-Defined Data

Share Data Among Callbacks

12-2

In this section...

“Overview of Data Sharing Techniques” on page 12-2
“Store Data in UserData or Other Object Properties” on page 12-2

“Store Data as Application Data” on page 12-3

“Create Nested Callback Functions” on page 12-5

“Store Data Using the guidata Function” on page 12-5

Overview of Data Sharing Techniques

Many apps contain interdependent controls, menus, and graphics objects. Since each callback
function has its own scope, you must explicitly share data with those parts of your app that need to
access it. The table below describes several different methods for sharing data within your app.

Method

Description

Requirements and Trade-Offs

“Store Data in
UserData or Other
Object Properties”
on page 12-2

Get or set property values directly
through the component object.

All UI components have a UserData
property that can store any MATLAB
data.

Requires access to the component
to set or retrieve the properties.

UserData holds only one variable
at a time, but you can store multiple
values as a struct array or cell
array.

“Store Data as
Application Data”
on page 12-3

Associate data with a specific
component using the setappdata
function. You can access it later using
the getappdata function.

Requires access to the component
to set or retrieve the application
data.

Can share multiple variables.

“Create Nested
Callback
Functions” on page
12-5

Nest your callback functions inside
your main function. This gives your
callback functions access to all the
variables in the main function.

Requires callback functions to be
coded in the same file as the main
function.

Can share multiple variables.

“Store Data Using
the guidata
Function” on page
12-5

Share data with the figure window
using the guidata function.

Stores or retrieves the data through
any Ul component.

Stores only one variable at a time,
but you can store multiple values as
a struct array or cell array.

Store Data in UserData or Other Object Properties

UI components contain useful information in their properties. For example, you can find the current
position of a slider by querying its Value property. In addition, all components have a UserData
property, which can store any MATLAB variable. All callback functions can access the value stored in
the UserData property as long as those functions can access the component.

Share User Data in Apps Created With Traditional Figures

Use dot notation to set and query properties of the traditional figure.

Share Data Among Callbacks

hfig = figure;
figname = hfig.Name;
hfig.Name = 'My Window';

If your code does not have direct access to a component, use the findobj function to search for that
component. If the search is successful, findobj returns the component as output. Then you can
access the component’s properties.

The following app code uses the UserData property to share information about the slider. To see how
it works, copy and paste this code into an editor and run it.

function my slider()

hfig = figure();

slider = uicontrol('Parent', hfig, 'Style', 'slider’', ...
'Units', 'normalized’', ...
'Position',[0.3 0.5 0.4 0.11, ...
'Tag', 'sliderl’', ...
'UserData',struct('val',0, 'diffMax',1),...
'Callback',@slider callback);

button = uicontrol('Parent', hfig, 'Style', 'pushbutton’,...
'Units', 'normalized’', ...
'Position',[0.4 0.3 0.2 0.11,...
'String', 'Display Difference',...
'Callback',@button_callback);

end

function slider callback(hObject,eventdata)
sval = hObject.Value;
diffMax = hObject.Max - sval;
data = struct('val',sval, 'diffMax',diffMax);
hObject.UserData = data;

end

function button callback(hObject,eventdata)
h = findobj('Tag', 'sliderl"');
data = h.UserData;
display([data.val data.diffMax]);

end

When the user moves the slider, the slider callback uses these commands to store data in a
structure:

e data = struct('val',sval, 'diffMax',diffMax) stores the values, sval and diffMax, in
a structure called data.

* hObject.UserData = data stores the value of data in the UserData property of the slider.

When the user clicks the push button, the button callback uses these commands to retrieve the
data:

* h = findobj('Tag', 'sliderl') finds the slider component.
* data = h.UserData gets the value of the slider’s UserData property.

Store Data as Application Data

To store application data, call the setappdata function:

12-3

12 Manage Application-Defined Data

12-4

setappdata(obj,name,value);

The first input, obj, is the component object in which to store the data. The second input, name, is a
friendly name that describes the value. The third input, value, is the value you want to store.

To retrieve application data, use the getappdata function:
data = getappdata(obj,name);

The component, obj, must be the component object containing the data. The second input, name,
must match the name you used to store the data. Unlike the UserData property, which only holds
only one variable, you can use setappdata to store multiple variables.

Share Application Data

This app uses application data to share two values. To see how it works, copy and paste this code into
an editor and run it.

function my_ slider()

hfig = figure();

setappdata(hfig, 'slidervalue',0);
setappdata(hfig, 'difference',1);

slider = uicontrol('Parent', hfig, 'Style', 'slider"', ...
'Units', 'normalized’, ...
'Position',[0.3 0.5 0.4 0.1], ...
'Tag', 'sliderl’', ...
‘Callback',@slider_callback);

button = uicontrol('Parent', hfig, 'Style', 'pushbutton’',...
'Units', 'normalized’, ...
'Position',[0.4 0.3 0.2 0.1], ...
'String', 'Display Values', ...
‘Callback',@button_callback);

end

function slider callback(hObject,eventdata)
diffMax = hObject.Max - hObject.Value;
setappdata(hObject.Parent, 'slidervalue',hObject.Value);
setappdata(hObject.Parent, 'difference',diffMax);

end

function button callback(hObject,eventdata)
currentval = getappdata(hObject.Parent, 'slidervalue');
diffval = getappdata(hObject.Parent, 'difference');
display([currentval diffval]);

end

When the user moves the slider, the slider callback function calculates diffMax. Then, it uses
these commands to modify the application data:

* setappdata(hObject.Parent, 'slidervalue', hObject.Value) stores the current slider
value in the figure using the name, 'slidervalue’. In this case, hObject.Parent is the figure.

* setappdata(parentfig, 'difference',diffMax) stores diffMax in the figure using the
name, 'difference’.

When the user clicks the push button, the button callback function retrieves the data using these
commands:

Share Data Among Callbacks

* currentval = getappdata(hObject.Parent, 'slidervalue') retrieves the current slider
value from the figure. In this case, hObject.Parent is the figure.

+ diffval = getappdata(hObject.Parent, 'difference') retrieve the difference value from
the figure.

Create Nested Callback Functions

You can nest callback functions inside the main function of a programmatic app. When you do this,
the nested callback functions share a workspace with the main function. As a result, the nested
functions have access to all the UI components and variables defined in the main function. The
following example code uses nested functions to share data about the slider position. To see how it
works, copy and paste this code into an editor and run it.

function my_ slider()

hfig figure();

data = struct('val',0, 'diffMax"',1);

slider = uicontrol('Parent', hfig, 'Style', 'slider"', ...
'Units', 'normalized’', ...
'Position',[0.3 0.5 0.4 0.11, ...
'Tag', 'sliderl’, ...
'Callback',@slider _callback);

button = uicontrol('Parent', hfig, 'Style', 'pushbutton',...
'Units', 'normalized’', ...
'Position',[0.4 0.3 0.2 0.11, ...
'String', 'Display Difference', ...
'Callback',@button_callback);

function slider callback(hObject,eventdata)
sval = hObject.Value;
diffMax = hObject.Max - sval;
data.val = sval;
data.diffMax = diffMax;
end

function button_callback(hObject,eventdata)
display([data.val data.diffMax]);
end
end

The main function defines a struct array called data. When the user moves the slider, the
slider callback function updates the val and diffMax fields of the data structure. When the
end user clicks the push button, the button callback function displays the values stored in data.

Store Data Using the guidata Function

The guidata function provides a way to share data with the figure window. You can store or retrieve
your data in any callback through the hObject component. This means that, unlike working with
UserData or application data, you do not need access to one specific component to set or get the
data. Call guidata with two input arguments to store data:

guidata(object handle,data);

The first input, object handle, is any UI component (typically hObject). The second input, data,
is the variable to store. Every time you call guidata using two input arguments, MATLAB overwrites

12-5

12 Manage Application-Defined Data

12-6

any previously stored data. This means you can only store one variable at a time. If you want to share
multiple values, then store the data as a struct array or cell array.

To retrieve data, call guidata using one input argument and one output argument:
data = guidata(object handle);

The component you specify to store the data does not need to be the same component that you use to
retrieve it.

If your data is stored as a struct array or cell array, and you want to update one element without
changing the other elements, then retrieve the data and replace it with the modified array:

data = guidata(hObject);
data.myvalue = 2;
guidata(hObject,data);

Use guidata to Store and Share Data

To use guidata in a programmatic app, store the data with some initial values in the main function.
Then you can retrieve and modify the data in any callback function.

The following code is a simple example of a programmatic app that uses guidata to share a
structure containing two fields. To see how it works, copy and paste this code into an editor and run
it.

function my slider()
hfig = figure();
guidata(hfig,struct('val',0, 'diffMax"',1));
slider = uicontrol('Parent', hfig, 'Style', 'slider’', ...
'Units', 'normalized’, ...
'"Position',[0.3 0.5 0.4 0.11, ...
'Tag', 'sliderl’', ...
‘Callback',@slider callback);

button = uicontrol('Parent', hfig, 'Style', 'pushbutton’',...
'Units', 'normalized’, ...
'Position',[0.4 0.3 0.2 0.1], ...
'String', 'Display Values', ...
‘Callback',@button_callback);

end

function slider callback(hObject,eventdata)
data = guidata(hObject);
data.val = hObject.Value;
data.diffMax = hObject.Max - data.val;
guidata(hObject,data);

end

function button callback(hObject,eventdata)
data = guidata(hObject);
display([data.val data.diffMax]);

end

When the user moves the slider, the slider callback function executes these commands to
retrieve and modify the stored data:

Share Data Among Callbacks

data = guidata(hObject) retrieves the stored data as a structure.
data.diffMax = maxval - data.val modifies the diffMax field in the structure.
guidata(hObject,data) stores the modified structure.

When the user clicks the push button, the button callback function calls guidata to retrieve a
copy of the stored structure. Then it displays the two values stored in the structure.

See Also

Related Examples

“Nested Functions”

“Interrupt Callback Execution” on page 13-2

“Write Callbacks for Apps Created Programmatically” on page 11-2
“Write Callbacks in App Designer” on page 7-15

“Share Data Within App Designer Apps” on page 7-23

12-7

Manage Callback Execution

13 Manage Callback Execution

Interrupt Callback Execution

13-2

In this section...

“How to Control Interruption” on page 13-2
“Callback Behavior When Interruption is Allowed” on page 13-2

“Example” on page 13-2

MATLAB lets you control whether or not a callback function can be interrupted while it is executing.
For instance, you can allow users to stop an animation loop by creating a callback that interrupts the
animation. At other times, you might want to prevent potential interruptions, when the order of the
running callback is important. For instance, you might prevent interruptions for a
WindowButtonMotionFcn callback that shows different sections of an image.

How to Control Interruption

Callback functions execute according to their order in a queue. If a callback is executing and a user
action triggers a second callback, the second callback attempts to interrupt the first callback. The
first callback is the running callback. The second callback is the interrupting callback.

Two property values control the response to an interruption attempt:

* The Interruptible property of the object owning the running callback determines if
interruption is allowed. A value of 'on' allows the interruption. A value of 'off' does not allow
the interruption. The default value is 'on".

« Ifinterruption is not allowed, then the BusyAction property (of the object owning the
interrupting callback) determines if MATLAB enqueues or discards the interrupting callback. A
value of 'queue' allows the interrupting callback to execute after the running callback finishes
execution. A value of 'cancel' discards the interrupting callback. The default value is 'queue’.

Callback Behavior When Interruption is Allowed

When an object’s Interruptible property is set to 'on', its callback can be interrupted at the next
occurrence of one of these commands: drawnow, figure, getframe, waitfor, pause, orwaitbar.

» If the running callback contains one of these commands, then MATLAB stops the execution of the
running callback and executes the interrupting callback. MATLAB resumes executing the running
callback when the interrupting callback completes.

+ If the running callback does not contain one of these commands, then MATLAB finishes executing
the callback without interruption.

For more details about the interruptible property and its effects, see the Interruptible property
description on the Uicontrol page.

Example

This example shows how to control callback interruption using the Interruptible and
BusyAction properties and a wait bar.

Interrupt Callback Execution

Copy the Source File

1 In MATLAB, set your current folder to one in which you have write access.

2 Execute this MATLAB command:
copyfile(fullfile(docroot, 'techdoc','creating guis', 'examples’',...
"callback interrupt.m')),fileattrib('callback interrupt.m', '+w');

Run the Example Code

Execute the command, callback interrupt. The program displays two windows.

i |'\

4 Figure 1 | =RC] 29

1. Click a button to generate a
waithar.

Wait (interruptible)

Wait (uninterruptible)

L -
[#] Figure 2 [= = =]
2. Click a button to try and interrupt 1
the waitbar.

0.8

0.6

0.4

0.2

)

0 0.2 0.4 0.6 0.8 1

Clicking specific pairs of buttons demonstrates the effect of different property value combinations :

* Callback interruption — Click Wait (interruptible) immediately followed by either button in the
second window: Surf Plot (queue) or Mesh Plot (cancel). The wait bar displays, but is
momentarily interrupted by the plotting operation.

13-3

13 Manage Callback Execution

13-4

* Callback queueing — Click Wait (uninterruptible) immediately followed by Surf Plot (queue).
The wait bar runs to completion. Then the surface plot displays.

* Callback cancellation — Click Wait (uninterruptible) immediately followed by Mesh Plot
(cancel). The wait bar runs to completion. No plot displays because MATLAB discards the mesh
plot callback.

Examine the Source Code

The Interruptible and BusyAction properties are passed as input arguments to the uicontrol
function when each button is created.

Here is the command that creates the Wait (interruptible) push button. Notice that the
Interruptible property is setto 'on'.

h_interrupt = uicontrol(h _panell, 'Style', 'pushbutton', ...
'Position',[30,110,120,30],...
'String', 'Wait (interruptible)',...
'Tooltip', 'Interruptible = on',...
'Interruptible','on', ...
'Callback',@wait interruptible);

Here is the command that creates the Wait (uninterruptible) push button. Notice that the
Interruptible property is setto 'off"'.

h_nointerrupt = uicontrol(h panell, 'Style', 'pushbutton', ...
'Position',[30,40,120,30],...
'String', 'Wait (uninterruptible)',...
'Tooltip', 'Interruptible = off', ...
'"Interruptible’, 'off', ...
'Callback',@wait_uninterruptible);

Here is the command that creates the Surf Plot (queue) push button. Notice that the BusyAction
property is set to 'queue’.

hsurf _queue = uicontrol(h _panel2, 'Style', 'pushbutton', ...
'Position',[30,200,110,30],...
'String', 'Surf Plot (queue)',...
'BusyAction', 'queue’, ...
'Tooltip', 'BusyAction = queue',...
'Callback',@surf _queue);

Here is the command that creates the Mesh Plot (cancel) push button. Notice that the BusyAction
property is set to 'cancel’.

hmesh cancel = uicontrol(h _panel2, 'Style', 'pushbutton',...
'Position',[30,130,110,30],...
'String', 'Mesh Plot (cancel)',...
'BusyAction', 'cancel’, ...
'Tooltip', 'BusyAction = cancel',...
'Callback',@mesh _cancel);

See Also
drawnow | timer | uiwait |waitfor

Interrupt Callback Execution

Related Examples

. “Write Callbacks for Apps Created Programmatically” on page 11-2
. “Schedule Command Execution Using Timer”
. “Finding Code Bottlenecks”

13-5

Examples of Programmatic Apps

14 Examples of Programmatic Apps

Programmatic App that Displays a Table

This example shows how to display a table in an app using the uitable function. It also shows how
to modify the appearance of the table and how to restrict editing of the table in the running app.

Create a Table Ul Component Within a Figure

The uitable function creates an empty Ul table in the figure.

fig
uit

uifigure('Position',[100 100 752 250]);
uitable('Parent',fig, 'Position',[25 50 700 200]);

Create a Table Containing Mixed Data Types

Load sample patients data that contains mixed data types and store it in a table array. To have data
appear as a drop-down list in the cells of the table component, convert a cell array variable to a
categorical array. To display the data in the table Ul component, specify the table array as the value
of the Data property.

load patients

t = table(LastName,Age,Weight,Height, Smoker,
SelfAssessedHealthStatus);

t.SelfAssessedHealthStatus = categorical(t.SelfAssessedHealthStatus,
{'Poor','Fair', 'Good"', 'Excellent'}, 'Ordinal’',true);

uit.Data = t;

Y - O >

Smith 38 176 71 b Excellent

Johnson 43 163 69 Fair

Williams 38 13 64 Good

Jones 40 133 67 Fair

Brown 49 119 64 Good

Davis 48 142 it Good

Miller 33 142 G4 v Good

Wilson 40 180 68 Good -

14-2

Customize the Display

You can customize the display of a Ul table in several ways. Use the ColumnName property to add
column headings.

uit.ColumnName = {'Last Name', 'Age', 'Weight',
'Height', 'Smoker', 'Health Status'};

Programmatic App that Displays a Table

Last Name Age Weight Height Smoker Health Status
Smith 38 176 7 b Excellent

Johnson 43 163 69 Fair

Williams 38 131 64 Good

Jones 40 133 67 Fair

Erown 49 18 64 Good

Davis 46 142 it Good

Miller 33 142 64 v Good

Wilson 40 180 65 Good ~

To adjust the widths of the columns, specify the ColumnWidth property. The ColumnWidth property
is a 1-by-N cell array, where N is the number of columns in the table. Set a specific column width, or
use 'auto' tolet MATLAB set the width based on the contents.

uit.ColumnWidth = {'auto',75, 'auto', 'auto', 'auto',100};

Last Name Age Weight Height Smoke Health Status
Smith 38 176 71 v Excellent

Johnson 43 163 69 Fair

Williams a8 131 G4 Good

Jones 40 133 67 Fair

Brown 48 119 G4 Good

Davis 45 142 68 Good

Miller 33 142 G4 v Good

Wilson 40 180 Ga Good ~

Add numbered row headings by setting the RowName property to ' numbered"'.

uit.RowName = 'numbered';

14-3

14 Examples of Programmatic Apps

-
Last Name Age Weight Height Smoke Health Status
Smith 38 176 71 v Excellent
Johnson 43 163 i Fair
Williams 38 131 G4 Good
Jones 40 133 67 Fair
Brown 49 114 G4 Good
Davis 46 142 it Good
Miller 33 142 G4 v Good
Wilson 40 180 68 Good =7
Reposition and resize the table using the Position property.
uit.Position = [15 25 565 200];
-

Last Name Age Weight Height Smoker Health Status
Smith 38 178 71 v Excellent

Johnson 43 163 69 Fair

Williams 38 131 64 Good

Jones 40 133 67 Fair

Erown 49 119 G4 Good

Davis 46 142 it Good

Miller 33 142 64 v Good

Wilson 40 130 GE Good i

14-4

By default, table UI components use row striping and cycle through the specified background colors
until the end of the table is reached. If you set the RowStriping property to 'off"', the table Ul
component will just use the first color specified in the BackgroundColor property for all rows. Here,
leave row striping 'on' and set three different colors for the BackgroundColor property.

uit.BackgroundColor = [1 1 .9; .9 .95 1;1 .5 .5];

Programmatic App that Displays a Table

— O >
Last Name Age Weight Height Smoker Health Status
Smith 38 178 71 Excellent -
Johnson] Fair
Jones] Fair
Brown] Good
Miller Good
Wilson 40 180 68] Good =

Enable Column Sorting and Restrict Editing of Cell Values

Make all the columns sortable by setting the ColumnSortable property to true. If a column is
sortable, arrows appear in the header when you hover your mouse over it.

uit.ColumnSortable = true;

— O >
Last Name +i |Age Weight Height Smoker Health Status
Smith I} 38 176 71 Excellent -
Johnson [] Fair
Jones] Fair
Brown] Good
Miller Good
Wilson 40 180 68] Good =

To restrict the user's ability to edit data in the table, set the ColumnEditable property. By default,
data cannot be edited in the running app. Setting the ColumnEditable property to true for a
column allows the user to edit data in that column.

uit.ColumnEditable = [false false true true true true];

14-5

14 Examples of Programmatic Apps

4 — O >

Last Name Age Weight Height Smoker Health Status
Smith 38 176 71 v

2 |Johnsaon 43 1623 59 Poor

o Williams 38 13 64 liiill!lllll

4 |Jones 40 133 67 Good h

5 Erown 49 119 G4 Excellent

¢ Davis 46 142 68 Suuw

7 | Miller 33 142 G4 e Good

8 | Wilson 40 130 GE Good -

Create a Callback

The Table object has two commonly used callbacks. The CellSelectionCallback executes when
the user selects a different cell. The CellEditCallback executes when the user changes a value in
a cell.

uit.CellEditCallback = @ageCheck(CB;

For example, if you want the Age column to contain values between 0 and 120, set the
CellEditCallback to a function such as this one:

function ageCheckCB(src,eventdata)

if (eventdata.Indices(2) == 2 && ... %
(eventdata.NewData < 0 || eventdata.NewData > 120)
tableData = src.Data;
tableData{eventdata.Indices(1l),eventdata.Indices(2)} = eventdata.PreviousData;
src.Data = tableData; % set the data back to its original value
warning('Age must be between 0 and 120.') % warn the user
end

check if column 2
)

end

If the user enters a value that is outside the acceptable range, the callback function returns a
warning and sets the cell value back to the previous value.

Get All Table Properties

To see all the properties of the table, use the get command.
get(uit)

BackgroundColor: [3x3 double]
BeingDeleted: off
BusyAction: 'queue'
ButtonDownFcn: '
CellEditCallback: @ageCheckCB

14-6

Programmatic App that Displays a Table

CellSelectionCallback:
Children:
ColumnEditable:
ColumnFormat:
ColumnName:
ColumnSortable:
ColumnWidth:
ContextMenu:
CreateFcn:

Data:

DeleteFcn:
DisplayData:
DisplayDataChangedFcn:
Enable:

Extent:

FontAngle:

FontName:

FontSize:

FontUnits:
FontWeight:
ForegroundColor:
HandleVisibility:
InnerPosition:
Interruptible:
KeyPressFcn:
KeyReleaseFcn:
Layout:
OuterPosition:
Parent:

Position:
RearrangeableColumns:
RowName:
RowStriping:
StyleConfigurations:
Tag:

Tooltip:

Type:

Units:

UserData:

Visible:

[0x0 handle]
[0 0 1111]

{}
{6x1 cell}
1

{'auto' [75] ‘'auto' ‘'auto'
[0x0 GraphicsPlaceholder]

"auto'

[100x6 table]
[100x6 table]

on"
[0 06 0 0]
'normal’
'Helvetica'

12

'pixels’
'normal’
[0 0 0]

‘on'

[15 25 565 200]
on

[0x0 matlab.ui.layout.LayoutOptions]
[15 25 565 200]

[1x1 Figure]

[15 25 565 200]

off

"'numbered’

on

[0x3 table]

'uitable’
'pixels’
[]

on

[100]}

14-7

Developing Classes of Ul Component
Objects

* “Custom UI Component Development Overview” on page 15-2

* “Manage Properties of Custom Ul Components” on page 15-9

* “Configure Custom UI Components for App Designer” on page 15-17
“Customize Properties of HTML UI Component” on page 15-25

15 Developing Classes of Ul Component Objects

Custom Ul Component Development Overview

15-2

To create custom Uls and visualizations, you can combine multiple graphics and UI objects, change
their properties, or call additional functions. In R2020a and earlier releases, a common way to store
your customization code and share it with others is to write a script or a function.

Starting in R2020b, instead of a script or function, you can create a class implementation for your Ul
components by defining a subclass of the ComponentContainer base class. Creating a class has
these benefits:

Easy customization — When users want to customize an aspect of your Ul component, they can set

a property rather than having to modify and rerun your code. Users can modify properties at the
command line or inspect them in the Property Inspector.

* Encapsulation — Organizing your code in this way allows you to hide implementation details from

your users. You implement methods that perform calculations and manage the underlying graphics
objects.

Structure of a Ul Component Class

A UI component class has several required parts, and several more that are optional.

In the first line of a UI component class, specify the

matlab.ui.componentcontainer.ComponentContainer class as the superclass. For example,
the first line of a class called ColorSelector looks like this:

classdef ColorSelector < matlab.ui.componentcontainer.ComponentContainer

In addition to specifying the superclass, include the following components in your class definition.
Some components are required, while other components are either recommended or optional.

Component Description

Public property block on|This block defines all the properties that users have access to. Together,
page 15-3 these properties make up the user interface of your Ul component.
(recommended)

Private property block |This block defines the underlying graphics objects and other

on page 15-3 implementation details that users cannot access.

(recommended)

In this block, set these attribute values:

* Access = private
* Transient
* NonCopyable

Custom Ul Component Development Overview

Component Description

Events block on page |This block defines the events that this Ul component will trigger.
154
(optional) In this block, set these attribute values:

* HasCallbackProperty
e NotifyAccess = protected
When you set the HasCallbackProperty attribute, MATLAB creates a

public property for each event in the block. The public property stores the
user-provided callback to execute when the event fires.

setup method on page |This method sets the initial state of the UI component. It executes once

15-5 when MATLAB constructs the object.

(required)
Define this method in a protected block so that only your class can execute
it.

update method on This method updates the underlying objects in your Ul component. It

page 15-5 executes under the following conditions:

(required)
* During the next drawnow execution after the user changes one or more
property values

* When an aspect of the user's graphics environment changes (such as
the size)

Define this method in the same protected block as the setup method.

Constructor Method

You do not have to write a constructor method for your class, because it inherits one from the
ComponentContainer base class. The inherited constructor accepts optional input arguments: a
parent container and any number of name-value pair arguments for setting properties on the Ul
component. For example, if you define a class called ColorSelector that has the public properties
Value and ValueChangedFcn, you can create an instance of your class using this code:

f
C

uifigure;
ColorSelector(f,'Value',[1 1 0], 'ValueChangedFcn',@(0,e)disp('Changed'))

If you want to provide a constructor that has a different syntax or different behavior, you can define a
custom constructor method. For an example of a custom constructor, see “Write Constructors for
Chart Classes”.

Public and Private Property Blocks

Divide your class properties between at least two blocks:

* A public block for storing the components of the user-facing interface

* A private block for storing the implementation details that you want to hide

The properties that go in the public block store the input values provided by the user. For example, a
UI component that allows a user to pick a color value might store the color value in a public property.

Since the property name-value pair arguments are optional inputs to the implicit constructor method,
the recommended approach is to initialize the public properties to default values.

15-3

15 Developing Classes of Ul Component Objects

15-4

The properties that go in the private block store the underlying graphics objects that make up your
UI component, in addition to any calculated values that you want to store. Eventually, your class will
use the data in the public properties to configure the underlying objects. Set the Transient and
NonCopyable attributes for the private block to avoid storing redundant information if the user
copies or saves an instance of the UI component.

For example, here are the property blocks for a Ul component that allows a user to pick a color value.
The public property block stores the value that the user can control: the color value. The private
property block stores the grid layout manager, button, and edit field objects.
properties

Value {validateattributes(Value, ...

{'double'},{'<="',1,'>=",0,'size',[1 3]})} = [1 0 0];
end

properties(Access = private,Transient,NonCopyable)
Grid matlab.ui.container.GridLayout
Button matlab.ui.control.Button
EditField matlab.ui.control.EditField

end

Event Block

You optionally can add a third block for events that the UI component fires.

Create a public property for each event in the block by specifying the HasCallbackProperty
attribute. The public property stores the user-provided callback to execute when the event fires. The
name of the public property is the name of the event appended with the letters Fcn. For example, a
UI component that allows a user to pick a color value might define the event ValueChanged, which
generates the corresponding public property ValueChangedFcn. Use the notify method to fire the
event and execute the callback in the property.

For example, here is the event block for a Ul component that allows a user to pick a color value.

events (HasCallbackProperty, NotifyAccess = protected)
ValueChanged
end

When the user picks a color value, call the notify method to fire the ValueChanged event and
execute the callback in the ValueChangedFcn property.

function getColorFromUser(obj)
c = uisetcolor(obj.Value);
if (isscalar(c) && (c == 0))
return;
end

% Update the Value property
oldValue = obj.Value;
obj.Value = c;

% Execute user callbacks and listeners
notify(obj, 'ValueChanged');
end

When a user creates an instance of the Ul component, they can specify a callback to execute when
the color value changes using the generated public property.

£
C

uifigure;
ColorSelector(f, 'ValueChangedFcn',@(o,e)disp('Changed'))

Custom Ul Component Development Overview

For more information about specifying callbacks to properties, see “Write Callbacks for Apps Created
Programmatically” on page 11-2.

Setup Method

Define a setup method for your class. A setup method executes once when MATLAB constructs the
UI component object. Any property values passed as name-value pair arguments to the constructor
method are assigned after this method executes.

Use the setup method to:

* Create graphics and UI objects that make up the component.

* Store the objects as private properties on the component object.

* Lay out and configure the objects.

* Wire up the objects to do something useful within the component.

To ensure that only your Ul component class can execute the setup method, define it in a protected
block.

Most Ul object creation functions have an optional input argument for specifying the parent. When
you call these functions from within a class method, you must specify the target parent. The setup
method takes one argument that represents the instance of the UI component object being set up.
Use this argument to specify the UI component as the target parent when calling an object creation
function from within the setup method.

For example, consider a Ul component that has these properties:

* One public property called Value
* Three private properties called Grid, Button, and EditField

The setup method calls the uigridlayout, uieditfield, and uibutton functions to create the
underlying graphics object for each private property, specifying the instance of the Ul component
(obj) as the target parent.

function setup(obj)
% Create grid layout to manage building blocks
obj.Grid = uigridlayout(obj,[1 2], 'ColumnWidth"',{"'1x"',22},...
'RowHeight',{'fit'}, 'ColumnSpacing',2, 'Padding"',2);

% Create edit field for entering color value
obj.EditField = uieditfield(obj.Grid, 'Editable', false,...
'HorizontalAlignment', 'center');

% Create button to confirm color change
obj.Button = uibutton(obj.Grid, 'Text',char(9998),

'ButtonPushedFcn',@(o,e) obj.getColorFromUser());
end

Update Method

Define an update method for your class. This method executes when your UI component object
needs to change its appearance in response to a change in values.

15-5

15 Developing Classes of Ul Component Objects

15-6

Use the update method to reconfigure the underlying graphics objects in your UI component based
on the new values of the public properties. Typically, this method does not determine which of the
public properties changed. It reconfigures all aspects of the underlying graphics objects that depend
on the public properties.

For example, consider a Ul component that has these properties:

* One public property called Value
* Three private properties called Grid, Button, and EditField

The update method updates the BackgroundColor of the EditField and Button objects with the
color stored in Value. The update method also updates the EditField object with a numeric
representation of the color. This way, however Value is changed, the change becomes equally visible
everywhere.

function update(obj)
% Update edit field and button colors
set([obj.EditField obj.Button], 'BackgroundColor',obj.Value,
'"FontColor',obj.getContrastingColor(obj.Value));

% Update edit field display text
obj.EditField.Value = num2str(obj.Value, '%0.29 ');

end

There might be a delay between changing property values and seeing the results of those changes.
The update method runs for the first time after the setup method runs and then it runs every time
drawnow executes. The drawnow function automatically executes periodically, based on the state of
the graphics environment in the user's MATLAB session. This periodic execution can lead to the
potential delay.

Example: Color Selector Ul Component

This example shows how to create a Ul component for selecting a color, using the code discussed in
other sections of this page. Create a class definition file named ColorSelectorComponent.min a
folder that is on the MATLAB path. Define the class by following these steps.

bntainer

Step Implementation
Derive from the classdef ColorSelector < matlab.ui.componentcontainer.ComponentC
ComponentContainer
base class.
Define public properties
properties. Value {validateattributes(Value,
{'double'},{'<=",1,"'>=",0,"'size"',[1 3]})} = [1 0 0O];
end
1 events (HasCallbackProperty, NotifyAccess = protected)
Deﬁne pubhc events. ValueChanged % ValueChangedFcn will be the generated callback property
end
Define private properties (Access = private, Transient, NonCopyable)
properties. Grid matlab.ui.container.GridLayout

Button matlab.ui.control.Button
EditField matlab.ui.control.EditField
end

Custom Ul Component Development Overview

Step

Implementation

Implement the setup
method. In this case,
call the uigridlayout,
uieditfield, and
uibutton functions to
create GridLayout,
EditField, and
Button objects. Store
those objects in the
corresponding private
properties.

Specify the
getColorFromUser
method as the
ButtonPushedFcn
callback that is called
when the button is
pressed.

methods (Access = protected)
function setup(obj)
% Grid layout to manage building blocks
obj.Grid = uigridlayout(obj,[1,2], 'ColumnWidth',{"'1x"',22}, ...
'RowHeight',{'fit'}, 'ColumnSpacing',2, 'Padding',2);

% Edit field for value display and button to launch uisetcolor

obj.EditField = uieditfield(obj.Grid, 'Editable', false, ...
'HorizontalAlignment', 'center');

obj.Button = uibutton(obj.Grid, 'Text',char(9998), ...
'ButtonPushedFcn',@(o,e) obj.getColorFromUser());

end

Implement the update
method. In this case,
update the background
color of the underlying
objects and the text in
the edit field to show
the color value.

function update(obj)
% Update edit field and button colors
set([obj.EditField obj.Button], 'BackgroundColor',obj.Value, ...
'FontColor',obj.getContrastingColor(obj.Value));

% Update the display text
obj.EditField.Value = num2str(obj.Value, '%0.2g9 ');
end
end

Wire the callbacks and
other pieces together
using private methods.

When the
getColorFromUser
method is triggered by
a button press, call the
uisetcolor function
to open the color picker
and then call the
notify function to
execute the user
callback and listener
functions.

When the
getContrastingColo
r method is called by
the update method,
calculate whether black
or white text is more
readable on the new
background color.

methods (Access = private)
function getColorFromUser(obj)
c = uisetcolor(obj.Value);
if (isscalar(c) && (c 0))
return;

end

% Update the Value property
obj.Value = c;

% Execute user callbacks and listeners
notify(obj, 'ValueChanged"');

end

function contrastColor = getContrastingColor(~,color)
% Calculate opposite color

c = color * 255;

contrastColor = [1 1 1];

if (c(1)*.299 + c(2)*.587 + c(3)*.114) > 186
contrastColor = [0 0 0O];

end

end
end
end

15-7

15 Developing Classes of Ul Component Objects

Next, create an instance of the UI component by calling the implicit constructor method with a few of
the public properties. Specify a callback to display the words Color changed when the color value

changes.

h = ColorSelector('Value', [1 1 0]);

h.ValueChangedFcn = @(o,e) disp('Color changed');

Py — O X
110 “

Click the button and select a color using the color picker. The component changes appearance and
MATLAB displays the words Color changed in the Command Window.

4 — O X

001

See Also

Classes
matlab.ui.componentcontainer.ComponentContainer

Functions
uibutton | uieditfield | uigridlayout

More About

. “Class Syntax Guide”
. “Configure Custom UI Components for App Designer” on page 15-17

15-8

Manage Properties of Custom Ul Components

Manage Properties of Custom Ul Components

When you develop a custom UI component as a subclass of the ComponentContainer base class,
you can use certain techniques to make your code more robust, efficient, and user-friendly. These
techniques focus on how you define and manage the properties of your class. Use any that are helpful
for the type of component you want to create and the user experience you want to provide.

* “Initialize Property Values” on page 15-9 — Set the default state of the Ul component in case
your users call the implicit constructor without any input arguments.

* “Validate Property Values” on page 15-9 — Ensure that the values are valid before using them.

* “Customize the Property Display” on page 15-10 — Provide a customized list of properties in the
Command Window when a user references the Ul component object without a semicolon.

* “Optimize the update Method” on page 15-11 — Improve the performance of the update method
when only a subset of your properties are used in a time-consuming calculation.

For an example of these techniques, see “Example: Optimized Polynomial Fit Ul Component with
Customized Property Display” on page 15-12.

In addition, there are certain considerations and limitations to keep in mind if you want to use your
custom UI component in App Designer, or share your component with users who develop apps in App
Designer. These considerations are listed on a separate page, in “Configure Custom UI Components
for App Designer” on page 15-17.

Initialize Property Values

Assign default values for all of the public properties of your class. This allows MATLAB to create a
valid UI component even if the user omits some name-value arguments when they call the constructor
method.

For UI components that contain a chart and have properties that store coordinate data, set the initial
values to NaN values or empty arrays so that the default chart is empty when the user does not
specify the coordinates.

Validate Property Values

Before your code uses property values, confirm that they have the correct size and class. For
example, this property block validates the size and class of three properties.

properties
LineColor {validateattributes(LineColor, {'double'},
{'<=",1,'>=",0,"'size"',[1 3]1})} = [1 0 0]
XData (1,:) double NaN
YData (1,:) double NaN

end

LineColor must be a 1-by-3 array of class double, where each value is in the range [0, 1]. Both
XData and YData must be row vectors of class double.

You can also validate properties that store the underlying component objects in your Ul component.
To do this, you need to know the correct class name for each object. To determine the class name of
an object, call the corresponding UI component function at the command line, and then call the

class function to get the class name. For example, if you plan to create a drop-down component in

15-9

15 Developing Classes of Ul Component Objects

15-10

your setup method, call the uidropdown function at the command line with an output argument.
Then, pass the output to the class function to get its class name.

dd = uidropdown;
class(d)

ans =
'matlab.ui.control.DropDown’

Use the output of the class function to validate the class for the corresponding property in your
class. Specify the class after the property name. For example, the following property stores a
DropDown object and validates its class.

properties (Access = private, Transient, NonCopyable)
DropDown matlab.ui.control.DropDown
end

Occasionally, you might want to define a property that can store different shapes and classes of
values. For example, if you define a property that can store a character vector, cell array of character
vectors, or string array, omit the size and class validation or use a custom property validation method.
For more information about validating properties, see “Validate Property Values”.

Customize the Property Display

One of the benefits of defining your UI component as a subclass of the ComponentContainer base
class is that it also inherits from the matlab.mixin.CustomDisplay class. This lets you customize
the list of properties MATLAB displays in the Command Window when you reference the Ul
component without a semicolon. To customize the property display, overload the
getPropertyGroups method. Within that method, you can customize which properties are listed
and the order of the list. For example, consider a FitPlot class that has the following public
properties.

properties
LineColor {validateattributes(LineColor, {'double'},
{'<=",1,'>=",0,'size',[1 31})} = [1 0 0]
XData (1,:) double NaN
YData (1,:) double NaN
end

The following getPropertyGroups method specifies the scalar object property list as XData,
YData, and LineColor.

function propgrp = getPropertyGroups(obj)
if ~isscalar(obj)
% List for array of objects
propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
else
% List for scalar object
propList = {'XData', 'YData', 'LineColor'};
propgrp = matlab.mixin.util.PropertyGroup(propList);
end
end

When the user references an instance of this Ul component without a semicolon, MATLAB displays
the customized list.

Manage Properties of Custom Ul Components

FitPlot

©
Il

FitPlot with properties:

XData: NaN
YData: NaN
LineColor: [1 0 0]

For more information about customizing the property display, see “Customize Property Display”.

Optimize the update Method

In most cases, the update method of your class reconfigures all the relevant aspects of your Ul
component that depend on the public properties. Sometimes, the reconfiguration involves an
expensive calculation that is time consuming. If the calculation involves only a subset of the
properties, you can design your class to execute that code only when it is necessary.

One way to optimize the update method is to add these elements to your class:

» A private property called ExpensivePropChanged that accepts a Logical value. This property
indicates whether any of the properties used in the expensive calculation have changed.

* A set method for each property involved in the expensive calculation. Within each set method,
set the ExpensivePropChanged property to true.

* A protected method called doExpensiveCalculation that performs the expensive calculation.

* A conditional statement in the update method that checks the value of ExpensivePropChanged.
If the value is true, execute doExpensiveCalculation.

The following code provides a template for this design.
classdef OptimizedUIComponent < matlab.ui.componentcontainer.ComponentContainer

properties
Propl
Prop2
end
properties(Access=private,Transient,NonCopyable)
ExpensivePropChanged (1,1) logical = true
end

methods (Access = protected)
function setup(obj)
% Configure UI component

o of

end
function update(obj)
% Perform expensive computation if needed
if obj.ExpensivePropChanged
doExpensiveCalculation(obj);
obj.ExpensivePropChanged = false;
end

% Update other aspects of UI component

o°

end
function doExpensiveCalculation(obj)
% Expensive code

o°

end
end

15-11

15 Developing Classes of Ul Component Objects

methods
function set.Prop2(obj,val)
obj.Prop2 = val;
obj.ExpensivePropChanged = true;
end
end
end

In this case, Prop2 is involved in the expensive calculation. The set.Prop2 method sets the value of
Prop2, and then it sets ExpensivePropChanged to true. The next time the update method runs, it
calls doExpensiveCalculation only if ExpensivePropChanged is true. Then, the update
method continues to update other aspects of the Ul component.

Example: Optimized Polynomial Fit Ul Component with Customized
Property Display

This example defines a FitPlot class for interactively displaying best fit polynomials, and uses all
four of these best practices. The properties defined in the properties block have default values and
use size and class validation. The getPropertyGroups method defines a custom order for the
property display. The changeFit method performs the potentially expensive polynomial fit
calculation, and the update method executes changeFit only if the plotted data changed.

To define this class, save the FitPlot class definition to a file named FitPlot.min a folder that is
on the MATLAB path.

classdef FitPlot < matlab.ui.componentcontainer.ComponentContainer
% Choose a fit method for your plotted data

properties
LineColor {validateattributes(LineColor,{'double'},
{'<=",1,'>=",0,"'size',[1 3]})} = [1 0 0]
XData (1,:) double NaN
YData (1,:) double NaN
end

properties (Access = private, Transient, NonCopyable)
DropDown matlab.ui.control.DropDown
Axes matlab.ui.control.UIAxes
GridLayout matlab.ui.container.GridlLayout
DatalLine (1,1) matlab.graphics.chart.primitive.Line
FitLine (1,1) matlab.graphics.chart.primitive.Line
FitXData (1,:) double
FitYData (1,:) double
ExpensivePropChanged (1,1) logical = true

end

methods (Access=protected)
function setup(obj)
% Set the initial position of this component
obj.Position = [100 100 300 300];

% Create the grid layout, drop-down, and axes

obj.GridLayout = uigridlayout(obj,[2,1],
'RowHeight', {20, '1x'}, ...
"ColumnWidth',{'1x'});

obj.DropDown = uidropdown(obj.GridLayout,
'Items',{'None', 'Linear"', 'Quadratic', 'Cubic'},
'ValueChangedFcn',@(s,e) changeFit(obj));

obj.Axes = uiaxes(obj.GridLayout);

% Create the line objects
obj.DataLine = plot(obj.Axes,NaN,NaN, '0');
hold(obj.Axes, 'on');
obj.FitLine = plot(obj.Axes,NaN,NaN);
hold(obj.Axes, 'off');

end

15-12

Manage Properties of Custom Ul Components

function update(obj)
% Update data points
obj.DatalLine.XData = obj.XData;
obj.DatalLine.YData = obj.YData;

% Do an expensive operation

if obj.ExpensivePropChanged
obj.changeFit();
obj.ExpensivePropChanged = false;

end

% Update the fit line

obj.FitLine.Color = obj.LineColor;

obj.FitLine.XData obj.FitXData;

obj.FitLine.YData obj.FitYData;
end

function changeFit(obj)
% Calculate the fit line based on the drop-down value
if strcmp(obj.DropDown.Value, 'None'")
obj.FitXData = NaN;
obj.FitYData = NaN;
else
switch obj.DropDown.Value
case 'Linear'
f = polyfit(obj.XData,obj.YData,l);
case 'Quadratic'
f = polyfit(obj.XData,obj.YData,2);
case 'Cubic'
f = polyfit(obj.XData,obj.YData,3);
end
obj.FitXData
obj.FitYData

= linspace(min(obj.XData),max(obj.XData));
= polyval(f,obj.FitXData);

end
end

function propgrp = getPropertyGroups(obj)
if ~isscalar(obj)
% List for array of objects
propgrp = getPropertyGroups@matlab.mixin.CustomDisplay(obj);
else
% List for scalar object
propList = {'XData', 'YData', 'LineColor'};
propgrp = matlab.mixin.util.PropertyGroup(propList);
end
end

end

methods
function set.XData(obj,val)
obj.XData = val;
obj.ExpensivePropChanged = true;
end
function set.YData(obj,val)
obj.YData = val;
obj.ExpensivePropChanged = true;
end
end
end

Define some sample data and use it to create an instance of FitPlot.
x=1[00.30.81.11.62.3];

y [0.6 0.67 1.01 1.35 1.47 1.25]1;
p FitPlot('XData',x, 'YData',y)

ans =

15-13

15 Developing Classes of Ul Component Objects

15-14

FitPlot with properties:

XData: [1x43 double]
YData: [1x43 double]
LineColor: [1 0 0]

4

| None v

167

o

14}

1271

087

0.65 ‘ ‘ ‘ : '
0 0.5 1 1.5 2 2.5

Use the drop-down to display the quadratic best fit curve.

Manage Properties of Custom Ul Components

[Guadratic L

Mone

Linear

Cuadratic

a7

Cubic

Set the LineColor property to change the color of the best fit curve to green.

p.LineColor = [0 0.5 0];

15-15

15 Developing Classes of Ul Component Objects

A
Cuadratic L
157 o
"H\
O
2 2.5
See Also
Classes

matlab.ui.componentcontainer.ComponentContainer

Functions
polyfit | uidropdown | uigridlayout

More About

. “Validate Property Values”

. “Customize Property Display”

. “Property Set Methods”

. “Custom UI Component Development Overview” on page 15-2

15-16

Configure Custom Ul Components for App Designer

Configure Custom Ul Components for App Designer

In this section...

“Custom UI Component Class Prerequisites” on page 15-17
“Create a Ul Component Class to Configure” on page 15-18
“Configure App Designer Metadata” on page 15-19

“View Configured UI Component in App Designer” on page 15-20
“Reconfigure UI Component” on page 15-21

“Remove Ul Component From App Designer” on page 15-23

“Share Configured UI Component” on page 15-23

Starting in R2021a, when you create a custom Ul component class, you can configure your
component for app creators to use interactively in App Designer. After you configure a Ul component,
app creators can add the component to the Component Library and can interact with the
component on the App Designer canvas and in the Property Inspector.

Follow these configuration steps if you have authored a Ul component class defined as a subclass of
the matlab.ui.componentcontainer.ComponentContainer base class, and you would like to
use it in either of these ways:

* Access your Ul component from the App Designer Component Library and interactively use it to
create an App Designer app.

* Share your Ul component for others to use interactively to create apps in App Designer.

Custom Ul Component Class Prerequisites

To allow your custom UI component to be used interactively in App Designer, there are some
requirements that your Ul component class must satisfy.

To successfully configure your Ul component, the setup method of your Ul component class cannot
have required input arguments. Also, the component class cannot dynamically add additional UI
components to its parent container. The only exception is that the class can dynamically add a
ContextMenu component in the parent figure.

For a public property of your component class to appear in the Property Inspector, you must specify
its type or assign a default value to it. If the property is an enumeration, you must both specify its
type and assign it a default value. In addition, the property type must belong to the list of types
supported by App Designer. This table shows the allowable property types and their appearance in
the Property Inspector.

Property Category Supported Data Types Property Inspector Input

Numerical Scalars or arrays of type Edit field
single, double, int8, int32,
int64, uint8, uintle,
uint32, or uint64

Logical logical Check box

15-17

15 Developing Classes of Ul Component Objects

Property Category Supported Data Types Property Inspector Input

Text Scalars of type string, scalars |Text area
or row vectors of type char,
and scalars or vectors of type
cell

Enumeration enumeration Editable drop-down menu

For more information on specifying property types and assigning default values, see “Manage
Properties of Custom UI Components” on page 15-9.

Create a Ul Component Class to Configure

Create a folder named MyComponents in a particular location, for example, C:\. Copy the
ColorSelector class definition and save it with the name ColorSelector.min the folder
C:\MyComponents.

classdef ColorSelector < matlab.ui.componentcontainer.ComponentContainer
% UI component to select colors

% Public properties
properties
Value {validateattributes(Value, .
{'double'},{'<=",1,'>=",0,"'size',[1 31})} = [1 0 0];
end

% Events
events (HasCallbackProperty, NotifyAccess = protected)

ValueChanged % ValueChangedFcn will be the generated callback property
end

% Private properties

properties (Access = private, Transient, NonCopyable)
Grid matlab.ui.container.GridLayout
Button matlab.ui.control.Button
EditField matlab.ui.control.EditField

end

methods (Access = protected)
function setup(obj)
% Grid layout to manage building blocks
obj.Grid = uigridlayout(obj,[1 2], 'ColumnWidth',{'1x"',22},
'RowHeight',{'fit'}, 'ColumnSpacing',2, 'Padding',2);

% Edit field for value display and button to launch uisetcolor

obj.EditField = uieditfield(obj.Grid, 'Editable’, false,
'HorizontalAlignment', 'center');

obj.Button = uibutton(obj.Grid, 'Text',char(9998),
'ButtonPushedFcn',@(o,e) obj.getColorFromUser());

end
function update(obj)
% Update edit field and button colors
set([obj.EditField obj.Button], 'BackgroundColor', obj.Value,
'"FontColor', obj.getContrastingColor(obj.Value));

% Update the display text
obj.EditField.Value = num2str(obj.Value, '%0.2g ');
end
end

methods (Access = private)
function getColorFromUser(obj)
c = uisetcolor(obj.Value);
if (isscalar(c) && (c == 0))
return;

15-18

Configure Custom Ul Components for App Designer

end

% Update the Value property
obj.vValue = c;

% Execute user callbacks and listeners
notify(obj, 'ValueChanged');

end

function contrastColor = getContrastingColor(~,color)
% Calculate opposite color
c = color * 255;
contrastColor = [1 1 1];
if (c(1)*.299 + c(2)*.587 + c(3)*.114) > 186

contrastColor = [0 0 0O];

end

end

end
end

Configure App Designer Metadata

Configure your custom UI component for use in App Designer by using the
appdesigner.customcomponent.configureMetadata function.

Call the function by passing it the path to your component class file. The function opens the App
Designer Custom Ul Component Metadata dialog. This dialog allows you to specify metadata about
the component. App Designer uses this metadata to display the component in the Component
Library.

appdesigner.customcomponent.configureMetadata('C:\MyComponents\ColorSelector.m");

15-19

15 Developing Classes of Ul Component Objects

4\ App Designer Custom Ul Component Metadata — O ®

Component File

CMyComponentstColorSelectorm

Component Library Appearance

Mame ColorSelector
Category (2J Iy Components ¥
lcon I_Eél 1 Browse

Component Details (2)

Description Ul component to select colors

Version 1.0

Author's Name

Author's Email

Help oK Cancel

The dialog prepopulates all of the required metadata from the component class definition. You can
edit the prepopulated metadata using the form. Select OK to configure the ColorSelector Ul
component.

After you select OK, the function creates a folder named resources inside the MyComponents
folder. Inside the resources folder, the function generates a file named appDesigner. json. This
file contains the metadata you provided in the dialog, in addition to other metadata MATLAB needs to
make your component available in App Designer.

Note Do not modify the appDesigner. json file by hand. To change any custom UI component
metadata, use the appdesigner.customcomponent.configureMetadata function.

View Configured Ul Component in App Designer

After you configure your custom UI component class using the
appdesigner.customcomponent.configureMetadata function, you can view and use it in App
Designer. For the Ul component to appear in the App Designer Component Library, you must add
the folder containing the class file and generated resources folder to the MATLAB path.

15-20

Configure Custom Ul Components for App Designer

For example, to use the ColorSelector Ul component in App Designer, add the MyComponents
folder to the MATLAB path by following the steps in “Change Folders on the Search Path”. Then, open
App Designer by entering appdesigner at the MATLAB command line. When it opens, select Blank
App. The ColorSelector Ul component appears at the bottom of the Component Library in the
My Components section.

Drag an instance of the ColorSelector Ul component onto the App Designer canvas. Notice that
the Property Inspector lists the public property Value and the ValueChangedFcn callback created
in the UI component class definition.

4\ App Designer - app1.mlapp™ — O X
DESKSNER CANVAS
[Even v Show grid v| Show alignment hints &, Zoom In D
1] -+ i Q
. . B ~ Apply Horzonta Snap to grid Show resizing hints =} Zoom Qut
Save Convert Same Size Grouping Reorde : 2 Run
- - - v Apply Vertically terva 0 - Reset Zoom -
FILE ALIGHN ARRAMNGE SPACE WVIEW Z00M RUN
appi.mlapp* x
Compor?f—:jnt Library Design View Code Vie
TS I
= Search o
~ & appi
AEROSPACE ~ app.UIFigure
app.ColorSelector -
0 @ . 0 Inspector | Callbacks
Airspeed Altimeter Artificial
Indicator Harizon Search P [iE g;
 COLORSELECTOR
@ 8 D vaue 100
Climb EGT Indicator Heading
Indicator Indicator v COLOR
Background Color 0.94 094 0.94 -
O a b INTERACTIVITY
RPM Indicator Turn _
= k POSITION
Coordinator
b CALLBACK EXECUTION CONTROL
MY COMPONENTS [CUSTOM) » PARENT/CHILD
- k IDENTIFIERS
ES
=1
CelorSelector
-
-
14 1 » 4

Note Avoid making changes to public properties and events in your UI component class definition
while using your component in App Designer, as doing so might lead to errors or unexpected
behavior.

Reconfigure Ul Component

Reconfigure a previously configured Ul component class when:

15-21

15 Developing Classes of Ul Component Objects

15-22

* You want to change existing Ul component metadata and update how the component is displayed
in the App Designer Component Library.

* You have made changes to the Ul component position or layout in your class definition.

To reconfigure your Ul component, call the
appdesigner.customcomponent.configureMetadata function by passing it the path to your Ul
component class file. The function opens the App Designer Custom Component Metadata dialog with
the existing metadata prepopulated.

appdesigner.customcomponent.configureMetadata('C:\MyComponents\ColorSelector.m");

Update the metadata by changing the category to Color and setting the author's name to
MathWorks, then select OK.

4\ App Designer Custom Ul Component Metadata — O >

Component File

CiMyComponentsiColorSelector.m

Component Library Appearance

Mame ColorSelector
Category (2J Color v
lcon I_E;: 1 Browse

Component Details (2

Description Ul component to select colors
Version 1.0
Author's Name MathWorks

Author's Email

Help oK Cancel

Go back to App Designer. The component now appears in the Color section of the Component
Library. Hover on the component. The author's name now appears.

Configure Custom Ul Components for App Designer

COLOR (CUSTOM)

==

SI=) ColorSelector (1.0)
e component to select colors
ColorSelector
Author: Math\Worlks
% File Location: C:\MyComponentsl

Remove Ul Component From App Designer

To remove a custom UI component from App Designer, use the
appdesigner.customcomponent.removeMetadata function.

Call the function by passing it the path to your component class file. The function removes the
metadata for the Ul component from the appDesigner. json file inside the resources folder, and
removes the component from the App Designer Component Library.

appdesigner.customcomponent. removeMetadata('C:\MyComponents\ColorSelector.m');

After you remove the App Designer metadata for a custom UI component, any App Designer apps that
use it do not load correctly. To continue editing apps that use the Ul component, reconfigure it using
the appdesigner.customcomponent.configureMetadata function.

Share Configured Ul Component

After configuring a UI component, you can share the component for others to use in App Designer.
You can either share the relevant files directly or package the component as a toolbox. In either case,
you must also share the generated resources folder.

Share Ul Component Files Directly

To share a configured Ul component directly with a user, create and share a folder with these
contents:

* The UI component class file
* The generated resources folder

Instruct the user you are sharing the Ul component with to add the shared folder to the MATLAB
path.

Package Ul Component as a Toolbox

Package your UI component as a toolbox by following the steps in “Create and Share Toolboxes”.
Make sure the folder you package as a toolbox has these contents:

* The UI component class file
* The generated resources folder

You can share the resulting .mltbx file directly with your users. To install it, they must double-click
the .mltbx file in the MATLAB Current Folder browser.

15-23

15 Developing Classes of Ul Component Objects

15-24

Alternatively, you can share your Ul component as an add-on by uploading the .mltbx file to
MATLAB Central File Exchange. Your users can find and install your add-on from the MATLAB
Toolstrip by performing these steps:

1 Ll
In the MATLAB Toolstrip, on the Home tab, in the Environment section, select Add-Ons =4,

2 Find the add-on by browsing through available categories on the left side of the Add-On Explorer
window. Alternatively, use the search bar to search for an add-on using a keyword.

3 Click the add-on to open its detailed information page.
On the information page, click Add to install the add-on.

See Also

Functions
appdesigner | appdesigner.customcomponent.configureMetadata |
appdesigner.customcomponent.removeMetadata

Classes
matlab.ui.componentcontainer.ComponentContainer

Related Examples

. “Custom UI Component Development Overview” on page 15-2

https://www.mathworks.com/matlabcentral/fileexchange/

Customize Properties of HTML Ul Component

Customize Properties of HTML Ul Component

To extend your custom Ul component using third-party visualizations or widgets, create a component
class that contains an HTML UI component. Use the HTML UI component to customize the
component appearance and to interface with third-party libraries, and use the component class to
define component properties and callbacks that the user can set.

Class Construction Overview

To create a custom UI component class that uses an HTML UI component, there are two files that you
must create.

* Ul component class file — In this file, you define your component class. You specify its properties,
its property values, the events it listens for, and the callback functions it triggers. Its properties
must include one that will contain the HTML UI component.

* HTML source file — In this file, you configure and update the visual appearance of the Ul
component, listen for user interactions, and pass the information that an interaction has occurred
to the UI component class.

Your code must communicate changes to property values and user interactions across these two files.
Enable Response to Property Updates

Since the UI component class file defines the properties that users can set, but the HTML source file
controls the visual style of the component, these two files need to communicate about property
updates.

In the UI component class file, configure the properties of your UI component. Specify the properties
that users can set by defining them as public properties in a properties block. In the update
method of your class, store the values of the public properties as fields in a struct in the Data
property of your HTML UI component. This gives the HTML source file access to these property
values.

In the HTML source file, use the property values to update the appearance of the HTML UI
component. To do so, in the setup function inside of a <script> tag, access the values of the fields
in Data and use them to modify the style properties of your HTML elements.

Enable Response to User Interactions

Users define component callback functions in MATLAB, but these callbacks often listen for a response
to an action performed on an HTML element defined in the HTML source file. So these two files also
need to communicate about user interactions.

In the UI component class file, first create the callback properties of your Ul component. Create an
events block with the HasCallbackProperty. When you define an event in this block, MATLAB

creates an associated public callback property for the UI component. For example, if you create an
event named ButtonPushed, this will automatically create a public property for your class named
ButtonPushedFcn.

To execute a user-defined callback function associated with a user interaction, your code must first
recognize when the user interaction has occurred. In the UI component class file, give the HTML Ul
component a way to do this. In the setup method, set the Data property of the HTML UI component
to a struct with a field to store information about whether the interaction has occurred. Because

15-25

15 Developing Classes of Ul Component Objects

the class file and the HTML source file share this property and its value, the HTML source file can
update the value to communicate the user interaction status to the UI component class. To
accomplish this, in the HTML source file, in the setup function inside of a <script> tag, create an
event listener that listens for the user interaction. When the listener detects the interaction, update
the Data property of the HTML Ul component.

After the Ul component class file receives the information that a user interaction has occurred, it
must then trigger the event associated with the interaction. Create a class method to do this. In the
class method, first call the built-in notify method to trigger the event you defined. This executes the
user-defined callback function associated with the event. Then, set the Data property of the HTML
component to wait for another interaction. In the setup method of the UI component class file, set
the DataChangedFcn property of the HTML component to the class method you defined. The HTML
UI component executes this method automatically whenever the Data property changes. Therefore,
after the HTML source file updates the Data property to communicate that the interaction has
occurred, this method executes the appropriate callback.

RoundButton Class Implementation

This example demonstrates a typical structure for writing a custom UI component class that uses an
HTML UI component. The class creates a button with a custom rounded style. It allows users to
specify the button color, text, text color, and response on click.

To define your UI component class, create two files in the same folder on the MATLAB path:

* RoundButton.m — UI component class definition
* RoundButton.html — HTML source file

RoundButton.m Class Definition

RoundButton class Discussion

classdef RoundButton < matlab.ui.componentd@reatearcismpnriéhtbmypaicernamed
RoundButton by defining a subclass of the
matlab.ui.componentcontainer.Component
Container class.

properties Define the Color, FontColor, and Text public
Color {mustBeMember(Color, ... |properties for your RoundButton class. These
- té "lmlt? : géupe,l 'bre((jF' %Ee‘i“ » 1%ed iawpetties thititHR user can set when
ontColor {mustBeMember(FontColor, : :
{'black', 'white'})} = 'black' creating a RoundButton instance.

U (Lo by EnEr = B For more information on defining properties, see

“Manage Properties of Custom Ul Components”
on page 15-9.

end

properties (Access = private, TransientDdfond ohyadbi¢)Component private property to

HTMLComponent matlab.ui.control.HTMhkold the HTML UI component.
end

events (HasCallbackProperty, NotifyAcce®Pefm@aoBettehPushed event in an events
% Generate a ButtonPushedFcn callbg @%ﬂ{o@ﬁé@bfy the HasCallbackProperty for
ButtonPushed the events block to automatically generate a

end ButtonPushedFcn public property for the class.

methods (Access=protected) Create a methods block.

15-26

Customize Properties of HTML Ul Component

RoundButton class

Discussion

function setup(obj)

% Set the initial position of this compon

obj.Position

% Create the HTML

obj.HTMLComponent

obj.HTMLComponent.

obj.HTMLComponent.

obj.HTMLComponent.

obj.HTMLComponent.
end

[100 100 80 40];

component

uihtml(obj);

Position = [1 1 obj.Pos
HTMLSource = fullfile(p
Data = struct('Clicked'

DataChangedFcn = @(s,e)

Define the setup method for your class. Within
"fhe method, set the initial position of your
component relative to its parent container.

Thens gheate an HTML component by calling the
uu,lhctmas unctiom Sgt the following properties for

@‘?ﬁlc%%b‘j?mponent

Position — the position of the HTML
component relative to the position of the
custom Ul component.

* HTMLSource — the source file that contains
the HTML markup for the HTML component.

* Data — a struct with a Clicked field with
value false. Code in the HTML source file
sets this field to true when the user clicks the
HTML component.

+ DataChangedFcn — an anonymous function
that calls a class method named
notifyClick. This function runs when the
Data property of the HTML component
changes.

function update(obj)
% Update the HTML

obj .HTMLComponent.
obj .HTMLComponent.
obj .HTMLComponent.
obj .HTMLComponent.

end

component daf
Data.Color
Data.FontColg
Data.Text
Position

Qo

[1

Define the update method for your class. Within
the method, store the values of the Color,
‘F*bhf@&%r and Text properties as fields in the

g 058 P&C8#Pé HTML component. This
tg the attributes of the HTML
but (381%1en 39?1% lets the HTML component

listen for when these properties are changed.

function notifyClick(obj)
if obj.HTMLComponent.Data.Click
obj .HTMLComponent.Data.Clig

drawnow

notify(obj, 'ButtonPushed');

end
end

Define the function that runs when the Data
% changes, which is called notifyClick.
r%ﬂéﬁ first checks to see if the Clicked
field of the HTML component data is true. If so,
the function sets the Clicked data field to false
to await the next button click. The function also
fires the ButtonPushed event, which in turn
executes the user-defined ButtonPushedFcn

property.

end
end

Close the methods block and the class definition.

RoundButton.html Source Definition

HTML Source

Discussion

<!DOCTYPE html>
<html>
<head>

Open the <html> tag and the <head> tag.

15-27

15 Developing Classes of Ul Component Objects

15-28

HTML Source

Discussion

<style>

html, body {
height: 100%;
text-align: center;

}

button {
width: 100%;
height: 100%;
border-radius: 2em;
font-size: lem;
cursor: pointer;
border: none;

}

button:focus {
outline: 0;

Define the style for the HTML content using CSS
markup:

* Set the height of the HTML body to scale to
fill the entire container in which it is
displayed.

* Define the relative size of the button within
the document body, the radius of the button
edges, the font size, the cursor style when
pointing to the button, and the button border
style.

}
</style>
<script _ type="text/javascript"> Write a setup function inside of a <script> tag
function setup(htmlComponent) { to connect your JavaScript object, called
htmlComponent, to the HTML UI component you
created in MATLAB.
htmlComponent.addEventListener("DataChanged”, funciidd(greatiert listener to the htmlComponent
buttonElement = document.getElementById("roundB itoré"g- 3 3 Thi I li f
buttonElement.style.backgroundColor = htmlCompo A QEI.EBIQJb.}eCt' 1s event listener listens for
buttonElement.innerHTML = htmlComponent.Data.Texany change in the Data property of the
buttonElement.style.color = htmlComponent.Data. :H’ﬁ‘ﬁﬂ%mponent MATLAB object and then
bi updates the attributes of the HTML button
element in accordance with the RoundButton
property values.
button = document.getElementById("roundButton"); |Add an event listener to the HTML button. This
button.addEventListener("click", function(event) { . .
e e e e et event listener listens for the button element to be
htmlComponent.Data = htmlComponent.Data; clicked. When a user clicks the button, the
b function:
* Updates the Clicked field of the HTML
component data to true
» Explicitly set the Data property of the HTML
component. This notifies the MATLAB HTML
component object to execute the
DataChangedFcn callback.
} Close the setup function and the <script> and
</script> <head> tags.
</head>
<body> Create a button element in the body of the HTML
<button id="roundButton"></button><br/xdocument.
</body>
</html> Close the <html> tag.

Customize Properties of HTML Ul Component

Create a RoundButton Instance

After creating and saving RoundButton.m and RoundButton.html, create an instance of the
RoundButton class in a Ul figure.

Specify the Color, FontColor, and the ButtonPushedFcn callback properties as name-value
arguments.

fig = uifigure('Position',[200 200 300 300]);
btn = RoundButton(fig,
'Color','red',
'FontColor', 'white',
'ButtonPushedFcn',@(o0,e)disp('Clicked"));
4\ — O *

Click the button. The Command Window displays Clicked.

See Also

Classes
matlab.ui.componentcontainer.ComponentContainer

Functions

uifigure | uihtml

Related Examples

. “Custom UI Component Development Overview” on page 15-2
. “Create HTML File That Can Trigger or Respond to Data Changes” on page 5-23

15-29

Create Uls with GUIDE

31

What Is GUIDE?

16 whatIs GUIDE?

GUIDE: Getting Started

16-2

In this section...

“UI Layout” on page 16-2
“Ul Programming” on page 16-2

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

Ul Layout

GUIDE is a development environment that provides a set of tools for creating user interfaces (UIs).
These tools simplify the process of laying out and programming Uls.

Using the GUIDE Layout Editor, you can populate a Ul by clicking and dragging UI components—
such as axes, panels, buttons, text fields, sliders, and so on—into the layout area. You also can create
menus and context menus for the Ul. From the Layout Editor, you can size the Ul, modify component
look and feel, align components, set tab order, view a hierarchical list of the component objects, and
set UI options.

Ul Programming

GUIDE automatically generates a program file containing MATLAB functions that controls how the Ul
behaves. This code file provides code to initialize the UI, and it contains a framework for the Ul
callbacks. Callbacks are functions that execute when the user interacts with a Ul component. Use the
MATLAB Editor to add code to these callbacks.

MATLAB software provides a selection of standard dialog boxes that you can create with a single
function call. For an example, see the documentation for msgbox, which also provides links to
functions that create specialized predefined dialog boxes.

GUIDE Preferences and Options

* “GUIDE Preferences” on page 17-2
* “GUIDE Options” on page 17-8

17 GUIDE Preferences and Options

GUIDE Preferences

17-2

In this section...

“Set Preferences” on page 17-2

“Confirmation Preferences” on page 17-2
“Backward Compatibility Preference” on page 17-4
“All Other Preferences” on page 17-4

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

Set Preferences

You can set preferences for GUIDE. From the MATLAB Home tab, in the Environment section, click
Preferences. These preferences apply to GUIDE and to all Uls you create.

The preferences are in different locations within the Preferences dialog box:

Confirmation Preferences

GUIDE provides two confirmation preferences. You can choose whether you want to display a
confirmation dialog box when you

» Activate a Ul from GUIDE.

* Export a UI from GUIDE.

* Change a callback signature generated by GUIDE.

In the Preferences dialog box, click MATLAB > General > Confirmation Dialogs to access the
GUIDE confirmation preferences. Look for the word GUIDE in the Tool column.

GUIDE Preferences

4\ Preferences

MATLAB

Add-Ons

App Designer

Code Analyzer

Colors

Command History

Command Window

Comparison

Current Folder

Editor/Debugger

Figure Copy Template

Fonts

General
MAT-Files
Confirmation Dialogs
Source Control
Java Heap Memory

GUIDE

Help

Keyboard

Project

Toolbars

Yariables

Web

Workspace

* MATLAB General Confirmation Dialogs Preferences

The following dialog boxes require user confirmation. Select a check box if you want that dialog box to appear.

State

KRR EIEIE]

S J<

B

Dialog Box Description

Warn before deleting Command History items

Warn before clearing the Command Window

Confirm when overwriting variables in MAT-files

Confirm when overwriting workspace variables via drag-and-drop

Prompt when editing files that do not exist

Prompt to exit debug mode when saving file

Prompt to save on activate
Prompt to save on export

Confirm changing default callback implementation
Confirm before exiting MATLAB
Confirm when deleting variables

Cancel

Tool ~

Command History
Command Window
Current Folder
Current Folder

Editor
Editor
GUIDE
GUIDE
GUIDE
General
Workspace

Apply

Help

Prompt to Save on Activate

When you activate a UI from the Layout Editor by clicking the Run button ®, a dialog box informs
you of the impending save and lets you choose whether or not you want to continue.

GUIDE

Do you wish to continue?

[] De not show this dialog again

ot

?/ Activating will save changes to your figure file and MATLARB code.

Prompt to Save on Export

From the Layout Editor, when you select File > Export to MATLAB-file, a dialog box informs you of

the impending save and lets you choose whether or not you want to continue.

17-3

17 GUIDE Preferences and Options

17-4

GUIDE *

) | Exporting will save changes to your figure file and MATLAE code.
= / Do you wish to continue?

[] Do not show this dialog again

Backward Compatibility Preference

MATLAB Version 5 or Later Compatibility

UI FIG-files created or modified with MATLAB 7.0 or a later version are not automatically compatible
with Version 6.5 and earlier versions. GUIDE automatically generates FIG-files, which are binary files
that contain the Ul layout information.

To make a FIG-file backward compatible, from the Layout Editor, select File > Preferences >
General > MAT-Files, and then select MATLAB Version 5 or later (save -v6).

Note The -v6 option discussed in this section is obsolete and will be removed in a future version of
MATLAB.

All Other Preferences

GUIDE provides other preferences, for the Layout Editor interface and for inserting code comments.
In the Preferences dialog box, click GUIDE to access these preferences.

GUIDE Preferences

A\ Preferences

4 MATLAB
Add-Ons
App Designer
Code Analyzer
Colors
Command History
Command Window
Comparison
Current Folder
Editor/Debugger
Figure Copy Template

Fonts

Keyboard
Project
Toolbars
Yariables
Web

LT

~

MATLAB GUIDE Preferences

[] Show names in component palette
Show file extension in window title
[] Show file path in window title

Add comments for newly generated callback functions

Help

The following topics describe the preferences in this dialog:

* “Show Names in Component Palette” on page 17-5

* “Show File Extension in Window Title” on page 17-6

* “Show File Path in Window Title” on page 17-6

* “Add Comments for Newly Generated Callback Functions” on page 17-6

Show Names in Component Palette

Displays both icons and names in the component palette, as shown below. When unchecked, the icons
alone are displayed in two columns, with tooltips.

17-5

17 GUIDE Preferences and Options

17-6

l H‘ Select

)

)

)

)

1 I

] Companent palette without names —— --

]
I;El P.op-up Menu }

)

)

)

)

)

)

’ Push Button

Ee]
BEE

’ e 5lider —— Component palette with names

’ #® Radio Button
’ b Check Box
[T Edit Text

n:-
=

THT| Static Text

=l Listbox

|

|

|

’ Teggle Button
| E Table
|

|

|

|

i{ﬁ Hoges
(%] Panel
|E Button Group

=X ActiveX Control

Show File Extension in Window Title

Displays the FIG-file file name with its file extension, . fig, in the Layout Editor window title. If
unchecked, only the file name is displayed.

Show File Path in Window Title

Displays the full file path in the Layout Editor window title. If unchecked, the file path is not
displayed.

Add Comments for Newly Generated Callback Functions

Callbacks are blocks of code that execute in response to actions by the user, such as clicking buttons
or manipulating sliders. By default, GUIDE sets up templates that declare callbacks as functions and
adds comments at the beginning of each one. Most of the comments are similar to the following.

- Executes during object deletion, before destroying properties.
unction figurel DeleteFcn(hObject, eventdata, handles)
hObject handle to figurel (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° o° o° —h o°

Some callbacks are added automatically because their associated components are part of the original
GUIDE template that you chose. Other commonly used callbacks are added automatically when you
add components. You can also add callbacks explicitly by selecting them from View > View
Callbacks menu or on the component's context menu.

If you deselect this preference, GUIDE includes comments only for callbacks that are automatically
included to support the original GUIDE template. GUIDE does not include comments for callbacks
subsequently added to the code.

GUIDE Preferences

See “Write Callbacks in GUIDE” on page 19-2 for more information about callbacks and about the
arguments described in the preceding comments.

See Also
Related Examples

. “GUIDE Options” on page 17-8
. “GUIDE Migration Strategies” on page 4-5

17-7

17 GUIDE Preferences and Options

GUIDE Options

17-8

In this section...

“The GUI Options Dialog Box” on page 17-8

“Resize Behavior” on page 17-8

“Command-Line Accessibility” on page 17-9
“Generate FIG-File and MATLAB File” on page 17-10
“Generate FIG-File Only” on page 17-11

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create

new apps interactively, “Develop Apps Using App Designer” instead.

The GUI Options Dialog Box

Access the dialog box from the GUIDE Layout Editor by selecting Tools > GUI Options. The options
you select take effect the next time you save your Ul

B Gui Options IERERIES

Resize behavior: Mon-rezizable
Command-line accessibilty: | Callback (GUI becomes Current Figure within Callbacks) -

@ Generate FIG file and MATLAB file

Generate callback function prototypes

GUI allows onhy one instance to run (=ingleton}

Use system color scheme for background (recommended)

_) Generate FIG file only

OK] ’ Cancel] ’ Help

Resize Behavior

You can control whether users can resize the window and how MATLAB handles resizing. GUIDE
provides three options:

* Non-resizable — Users cannot change the window size (default).

GUIDE Options

* Proportional — The software automatically scales the components in the UI in proportion to the
new figure window size.

* Other (Use SizeChangedFcn) — Program the UI to behave in a certain way when users resize
the figure window.

The first two options set figure and component properties appropriately and require no other action.
Other (Use SizeChangedFcn) requires you to write a callback routine that recalculates sizes and
positions of the components based on the new figure size.

Command-Line Accessibility

You can restrict access to a figure window from the command line or from a code file with the GUIDE
Command-line accessibility options.

Unless you explicitly specify a figure handle, many commands, such as plot, alter the current figure
(the figure specified by the root CurrentFigure property and returned by the gcf command). The
current figure is usually the figure that is most recently created, drawn into, or mouse-clicked. You
can programmatically designate a figure h (where h is its handle) as the current figure in four ways:

1 set(groot, 'CurrentFigure',h) — Makes figure h current, but does not change its visibility
or stacking with respect to other figures
2 figure(h) — Makes figure h current, visible, and displayed on top of other figures

3 axes(h) — Makes existing axes h the current axes and displays the figure containing it on top of
other figures

4 plot(h,...),or any plotting function that takes an axes as its first argument, also makes
existing axes h the current axes and displays the figure containing it on top of other figures

The gcf function returns the handle of the current figure.
h = gcf

For a UI created in GUIDE, set the Command-line accessibility option to prevent users from
inadvertently changing the appearance or content of a UI by executing commands at the command
line or from a script or function, such as plot. The following table briefly describes the four options
for Command-line accessibility.

Option Description
Callback (GUI becomes Current Figure The Ul can be accessed only from within a
within Callbacks) callback. The UI cannot be accessed from the

command line or from a script. This is the default.

Off (GUI never becomes Current Figure) The UI cannot be accessed from a callback, the
command line, or a script, without the handle.

On (GUI may become Current Figure from The UI can be accessed from a callback, from the
Command Line) command line, and from a script.

Other (Use settings from Property Inspector) | You control accessibility by setting the
HandleVisibility and IntegerHandle
properties from the Property Inspector.

17-9

17 GUIDE Preferences and Options

17-10

Generate FIG-File and MATLAB File

Select Generate FIG-file and MATLAB file in the GUI Options dialog box if you want GUIDE to
create both the FIG-file and the Ul code file (this is the default). Once you have selected this option,
you can select any of the following items in the frame to configure Ul code:

* “Generate Callback Function Prototypes” on page 17-10
* “GUI Allows Only One Instance to Run (Singleton)” on page 17-10
* “Use System Color Scheme for Background” on page 17-10

See “Files Generated by GUIDE” on page 3-16 for information about these files.
Generate Callback Function Prototypes

If you select Generate callback function prototypes in the GUI Options dialog, GUIDE adds
templates for the most commonly used callbacks to the code file for most components. You must then
insert code into these templates.

GUIDE also adds a callback whenever you edit a callback routine from the Layout Editor's right-click
context menu and when you add menus to the UI using the Menu Editor on page 18-40.

See “Write Callbacks in GUIDE” on page 19-2 for general information about callbacks.

Note This option is available only if you first select the Generate FIG-file and MATLAB file option.

GUI Allows Only One Instance to Run (Singleton)
This option allows you to select between two behaviors for the figure window:

» Allow MATLAB software to display only one instance of the UI at a time.
* Allow MATLAB software to display multiple instances of the UI.

If you allow only one instance, the software reuses the existing figure whenever the command to run
your program is executed. If a Ul window already exists, the software brings it to the foreground
rather than creating a new figure.

If you clear this option, the software creates a new figure whenever you issue the command to run
the program.

Even if you allow only one instance of a Ul to exist, initialization can take place each time you invoke
it from the command line. For example, the code in an OpeningFcn will run each time a GUIDE
program runs unless you take steps to prevent it from doing so. Adding a flag to the handles
structure is one way to control such behavior. You can do this in the OpeningFcn, which can run
initialization code if this flag doesn't yet exist and skip that code if it does.

Note This option is available only if you first select the Generate FIG-file and MATLAB file option.

Use System Color Scheme for Background

The default color used for Ul components is system dependent. This option enables you to make the
figure background color the same as the default component background color.

GUIDE Options

To ensure that the figure background matches the color of the components, select Use system color
scheme for background in the GUI Options dialog.

Note This option is available only if you first select the Generate FIG-file and MATLAB file option.

Generate FIG-File Only

The Generate FIG-file only option enables you to open figures and Uls to perform limited editing.
These can be any figures and need not be Uls. Uls need not have been generated using GUIDE. This
mode provides limited editing capability and may be useful for Uls generated in MATLAB Versions 5.3
and earlier. See the guide function for more information.

GUIDE selects Generate FIG-file only as the default if you do one of the following:
* Start GUIDE from the command line by providing one or more figure objects as arguments.
guide(f)

In this case, GUIDE selects Generate FIG-file only, even when a code file with a corresponding
name exists in the same folder.

» Start GUIDE from the command line and provide the name of a FIG-file for which no code file with
the same name exists in the same folder.

guide('myfig.fig"')

» Use the GUIDE Open Existing GUI tab to open a FIG-file for which no code file with the same
name exists in the same folder.

When you save the figure or Ul with Generate FIG-file only selected, GUIDE saves only the FIG-file.
You must update any corresponding code files yourself, as appropriate.

If you want GUIDE to manage the Ul code file for you, change the selection to Generate FIG-file
and MATLAB file before saving the UI. If there is no corresponding code file in the same location,
GUIDE creates one. If a code file with the same name as the original figure or UI exists in the same
folder, GUIDE overwrites it. To prevent overwriting an existing file, save the Ul using Save As from
the File menu. Select another file name for the two files. GUIDE updates variable names in the new
code file as appropriate.

Callbacks for Uls without Code

Even when there is no code file associated with a UI FIG-file, you can still provide callbacks for Ul
components to make them perform actions when used. In the Property Inspector, you can type
callbacks in the form of character vectors, built-in functions, or MATLAB code file names; when your
program runs, it will execute them if possible. If the callback is a file name, it can include arguments
to that function. For example, setting the Callback property of a push button to sqrt(2) causes the
result of the expression to display in the Command Window:

ans =
1.4142

Any file that a callback executes must be in the current folder or on the MATLAB path. For more
information on how callbacks work, see “Write Callbacks in GUIDE” on page 19-2

17-11

17 GUIDE Preferences and Options

See Also

Related Examples
. “GUIDE Preferences” on page 17-2

17-12

Lay Out a Ul Using GUIDE

* “Set the UI Window Size in GUIDE” on page 18-2
* “Add Components to the GUIDE Layout Area” on page 18-4
* “Create Menus for GUIDE Apps” on page 18-40

18 Lay Out a Ul Using GUIDE

Set the Ul Window Size in GUIDE

18-2

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

Set the size of the Ul window by resizing the grid area in the Layout Editor. Click the lower-right
corner of the layout area and drag it until the Ul is the desired size. If necessary, make the window
larger.

e AP

H
1

b

it: [512, 5] Position: [520, 380, 560, 420]

As you drag the corner handle, the readout in the lower right corner shows the current position of the
UI in pixels.

Setting the Units property to characters (nonresizable Uls) or normalized (resizable Uls) gives
the UI a more consistent appearance across platforms.

Prevent Existing Objects from Resizing with the Window

Existing objects within the UI resize with the window if their Units are set to 'normalized'. To
prevent them from resizing with the window, perform these steps:

1 Set each object’s Units property to an absolute value, such as inches or pixels before enlarging
the UL

To change the Units property for all the objects in your UI simultaneously, drag a selection box
around all the objects, and then click the Property Inspector button 2 and set the Units.

2 When you finish enlarging the U, set each object’s Units property back to normalized.

Set the Window Position or Size to an Exact Value

1 In the Layout Editor, open the Property Inspector for the figure by clicking the B button (with no
components selected).

2 In the Property Inspector, scroll to the Units property and note whether the current setting is
characters or normalized.

3 Click the down arrow at the far right in the Units row, and select inches.

In the Property Inspector, display the Position property elements by clicking the + sign to the
left of Position.

Set the Ul Window Size in GUIDE

5 Change the x and y coordinates to the point where you want the lower-left corner of the window
to appear, and its width and height.

6 Reset the Units property to its previous setting, as noted in step 2.

Maximize the Layout Area

You can make maximum use of space within the Layout Editor by hiding the GUIDE toolbar and status
bar, and showing only tool icons, as follows:

1 From the View menu, deselect Show Toolbar.
2 From the View menu, deselect Show Status Bar.
3 Select File > Preferences, and then clear Show names in component palette

See Also

Related Examples

. “Ways to Build Apps” on page 1-2

. “Create a Simple App Using GUIDE” on page 3-2
. “GUIDE Options” on page 17-8

18-3

18 Lay Out a Ul Using GUIDE

Add Components to the GUIDE Layout Area

18-4

In this section...

“Place Components” on page 18-4

“User Interface Controls” on page 18-8
“Panels and Button Groups” on page 18-22
“Axes” on page 18-26

“Table” on page 18-29

“Resize GUIDE UI Components” on page 18-37

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

Place Components

The component palette at the left side of the Layout Editor contains the components that you can add
to your UL

To place components in the GUIDE layout area and give each component a unique identifier, follow
these steps:

1 Display component names on the palette.

a Onthe MATLAB Home tab, in the Environment section, click Preferences.
b In the Preferences dialog box, click GUIDE.
¢ Select Show Names in Component Palette, and then click OK .

2 Place components in the layout area according to your design.

* Drag a component from the palette and drop it in the layout area.

* Click a component in the palette and move the cursor over the layout area. The cursor
changes to a cross. Click again to add the component in its default size, or click and drag to
size the component as you add it.

Once you have defined a Ul component in the layout area, selecting it automatically shows it in
the Property Inspector. If the Property Inspector is not open or is not visible, double-clicking a
component raises the inspector and focuses it on that component.

The components listed in the following table have additional considerations; read more about
them in the sections described there.

If You Are Adding... Then...

Panels or button groups See “Add a Component to a Panel or Button
Group” on page 18-6.

Add Components to the GUIDE Layout Area

If You Are Adding... Then...
Menus See “Create Menus for GUIDE Apps” on page
18-40

3 Assign a unique identifier to each component. Do this by setting the value of the component Tag
properties. See “Assign an Identifier to Each Component” on page 18-7 for more information.

4 Specify the look and feel of each component by setting the appropriate properties. The following
topics contain specific information.

“User Interface Controls” on page 18-8

“Panels and Button Groups” on page 18-22
“Axes” on page 18-26
“Table” on page 18-29

This is an example of a Ul in the Layout Editor. Components in the Layout Editor are not active.

Y untitled3 fig

File Edit View Layout Tools Help

HNEdH s$RBRe 0 2tEBhd 8% | b

l k Select

’ Push Button

| = Siider

’ @ Radio Button

’ [CheckBox

[R Edit Text

T Static Text

=3 Pop-up Menu

=l Listbox

Toggle Button

i{_ﬂ Pxes

[%] Panel

|j Button Group

=X ActiveX Control

l
[
l
l
[B Table
l
[
l
l

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

Tag: figurel

[ollE /=S

axes?

Push Button

Push Button

Static Text

Pop-up M... > |

Current Point: [104, 439] Position: [644, 233, 532, 440]

Use Coordinates to Place Components

The status bar at the bottom of the GUIDE Layout Editor displays:

* Current Point — The current location of the mouse relative to the lower left corner of the grid
area in the Layout Editor.

18-5

18 Lay Out a Ul Using GUIDE

* Position — The Position property of the selected component is a vector: [distance from left,
distance from bottom, width, height], where distances are relative to the parent figure, panel, or
button group.

Here is how to interpret the coordinates in the status bar and rulers:

* The Position values updates as you move and resize components. The first two elements in the
vector change as you move the component. The last two elements of the vector change as the
height and width of the component change.

* When no components are selected, the Position value displays the location and size of the figure.
Add a Component to a Panel or Button Group

To add a component to a panel or button group, select the component in the component palette then
move the cursor over the desired panel or button group. The position of the cursor determines the
component's parent.

GUIDE highlights the potential parent as shown in the following figure. The highlight indicates that if
you drop the component or click the cursor, the component will be a child of the highlighted panel,
button group, or figure.

R — oo |

File Edit VYiew Layout Tools Help

IlEd §2m20 aBEhd XY b

50 Loa L50 H 1] 50 00 50 400 -

|k Select

| [l Push Button |

| == Slider

27T
P

@ Radio Button
B Check Box
BT Edit Ted 1 Highlight ———=

220
PR
[

Fanal

Taf Static Text Cursor -

e
I

|

|

|

|

| =3 Pop-up Menu
| Sl Listbox

i & Toggle Button - .
|

|

L

|

220

170

| Bl Table
' fﬁ Anes
[%] Panel o
"8 Button Group |
| EX ActiveX Contral | 35 -

£l 4] 3

Tag: uipansil Current Paint: [221, 263] Position: [141, 69, 219, 251]

18-6

Add Components to the GUIDE Layout Area

Assign a unique identifier to each component in your panel or button group by setting the value of its
Tag property. See “Assign an Identifier to Each Component” on page 18-7 for more information.

Include Existing Components in Panels and Button Groups

When you add a new component or drag an existing component to a panel or button group, it will
become a member, or child, of the panel or button group automatically, whether fully or partially
enclosed by it. However, if the component is not entirely contained in the panel or button group, it
appears to be clipped in the Layout Editor and in the running app.

You can add a new panel or button group to a Ul in order to group any of its existing controls. In
order to include such controls in a new panel or button group, do the following. The instructions refer
to panels, but you do the same for components inside button groups.

1 Select the New Panel or New Button Group tool and drag out a rectangle to have the size and
position you want.

The panel will not obscure any controls within its boundary unless they are axes, tables, or other
panels or button groups. Only overlap panels you want to nest, and then make sure the overlap is
complete.

2 You can use Send Backward or Send to Back on the Layout menu to layer the new panel
behind components you do not want it to obscure, if your layout has this problem. As you add
components to it or drag components into it, the panel will automatically layer itself behind them.

Now is a good time to set the panel's Tag and String properties to whatever you want them to
be, using the Property Inspector.

3 Open the Object Browser from the View menu and find the panel you just added. Use this tool to
verify that it contains all the controls you intend it to group together. If any are missing, perform
the following steps.

4 Drag controls that you want to include but don't fit within the panel inside it to positions you
want them to have. Also, slightly move controls that are already in their correct positions to
group them with the panel.

The panel highlights when you move a control, indicating it now contains the control. The Object
Browser updates to confirm the relationship. If you now move the panel, its child controls move
with it.

Tip You need to move controls with the mouse to register them with the surrounding panel or
button group, even if only by a pixel or two. Selecting them and using arrow keys to move them
does not accomplish this. Use the Object Browser to verify that controls are properly nested.

See “Panels and Button Groups” on page 18-22 for more information on how to incorporate panels
and button groups into a UL

Assign an Identifier to Each Component
Use the Tag property to assign a unique and meaningful identifier to your components.
When you place a component in the layout area, GUIDE assigns a default value to the Tag property.

Before saving the UI, replace this value with a name or abbreviation that reflects the role of the
component in the UI.

18-7

18 Lay Out a Ul Using GUIDE

18-8

The name you assign is used by code to identify the component and must be unique in the UI. To set
the Tag property:

1 Select View > Property Inspector or click the Property Inspector button B,
In the layout area, select the component for which you want to set Tag.

In the Property Inspector, select Tag and then replace the value with the name you want to use
as the identifier. In the following figure, Tag is set to pushbuttonl.

o

@Inspector‘. matlab.ui.contrel. JIControl E'@
Bz 89| w1 =

o

String EJ| Push Button &
Style pushbutton o
Tag pushbuttonl &
Tom i Cbriim) i

User Interface Controls

User interface controls include push buttons, toggle buttons, sliders, radio buttons, edit text controls,
static text controls, pop-up menus, check boxes, and list boxes.

To define user interface controls, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the Property Inspector by

selecting View > Property Inspector or by clicking the Property Inspector button @
2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of user interface controls and offer a simple
example for each kind of control:

* “Commonly Used Properties” on page 18-8
e “Push Button” on page 18-9

* “Slider” on page 18-10

* “Radio Button” on page 18-12

* “Check Box” on page 18-13

+ “Edit Text” on page 18-14

» “Static Text” on page 18-15

* “Pop-Up Menu” on page 18-16

* “List Box” on page 18-18

+ “Toggle Button” on page 18-20

Commonly Used Properties

The most commonly used properties needed to describe a user interface control are shown in the
following table. Instructions for a particular control may also list properties that are specific to that
control.

Add Components to the GUIDE Layout Area

Property Value Description

Enable on, inactive, off. Default is Determines whether the control
on. is available to the user

Max Scalar. Default is 1. Maximum value. Interpretation
depends on the type of
component.

Min Scalar. Default is 0. Minimum value. Interpretation
depends on the type of
component.

Position 4-element vector: [distance from |Size of the component and its
left, distance from bottom, width, [location relative to its parent.
height].

String Character vector (for example, |Component label. For list boxes
'buttonl'). Can an also be a and pop-up menus it is a list of
character array or a cell array of |the items.
character vectors.

Units characters, centimeters, Units of measurement used to
inches, normalized, pixels, |interpretthe Position property
points. Default is characters. |vector

Value Scalar or vector Value of the component.

Interpretation depends on the
type of component.

For a complete list of properties and for more information about the properties listed in the table, see

Uicontrol.

Push Button

To create a push button with label Button 1, as shown in this figure:

Y Figure 1

g de

Button 1

Insert Tools

OE k[E

File Edit View

— | >

Desktop Window Help E

» Specify the push button label by setting the String property to the desired label, in this case,

Button 1.

18-9

18 Lay Out a Ul Using GUIDE

18-10

i 1

@Inspectur: ratlab.ui.control UIControl E@
Bz (1] =i =3

SliderStep EE| [1x2 double array] & "
ER) oo ,
Style pushbutton v
T o R (S (S | - 7

To display the & character in a label, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

The push button accommodates only a single line of text. If you specify more than one line, only
the first line is shown. If you create a push button that is too narrow to accommodate the specified
String property value, MATLAB truncates the value with an ellipsis.

If you want to set the position or size of the component to an exact value, then modify its
Position property.

To add an image to a push button, assign the button's CData property as an m-by-n-by-3 array of
RGB values that defines a truecolor image. You must do this programmatically in the opening
function of the code file. For example, the array img defines a 16-by-64-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

img = rand(16,64,3);
set(handles.pushbuttonl, 'Chata',img);

where pushbuttonl is the push button's Tag property.

See ind2rgb for information on converting a matrix X and corresponding colormap, i.e., an (X,
MAP) image, to RGB (truecolor) format.

Slider

To create a slider as shown in this figure:

Add Components to the GUIDE Layout Area

4 Figure 1 — O *

File Edit View Inset Tools Desktop Window Help u

Udde @ 08| K[E

Specify the range of the slider by setting its Min property to the minimum value of the slider and
its Max property to the maximum value. The Min property must be less than Max.

Specify the value indicated by the slider when it is created by setting the Value property to the
appropriate number. This number must be less than or equal to Max and greater than or equal to
Min. If you specify Value outside the specified range, the slider is not displayed.

The slider Value changes by a small amount when a user clicks the arrow button, and changes by
a larger amount when the user clicks the trough (also called the channel). Control how the slider
responds to these actions by setting the SliderStep property. Specify SliderStep as a two-
element vector, [minor step major step], where minor_ step is less than or equal to
major_step. Because specifying very small values can cause unpredictable slider behavior, make
both minor step and major step greater than le-6. Set major step to the proportion of the
range that clicking the trough moves the slider thumb. Setting it to 1 or higher causes the thumb
to move to Max or Min when the trough is clicked.

Asmajor step increases, the thumb grows longer. When major stepis 1, the thumb is half as
long as the trough. When major step is greater than 1, the thumb continues to grow, slowly
approaching the full length of the trough. When a slider serves as a scroll bar, you can uses this
behavior to indicate how much of the document is currently visible by changing the value of
major_step.

li Arrow button
! 5 l_ ' (minor_step)

Trough
(major step)

If you want to set the location or size of the component to an exact value, then modify its
Position property.

The slider component provides no text description or data entry capability. Use a “Static Text” on
page 18-15 component to label the slider. Use an “Edit Text” on page 18-14 component to
enable a user to input a value to apply to the slider.

On Mac platforms, the height of a horizontal slider is constrained. If the height you set in the
position vector exceeds this constraint, the displayed height of the slider is the maximum allowed.
The height element of the position vector is not changed.

18-11

18 Lay Out a Ul Using GUIDE

18-12

Radio Button

To create a radio button with label Indent nested functions, as shown in this figure:

Ddde @ 08 &E

4. Figure 1 — O et

File Edit Yiew Insert Tools Desktop Window Help

(®) Indent nested functions.

Specify the radio button label by setting the String property to the desired label, in this case,
Indent nested functions.

@Inspectur: matlab.ui.control.UIControl |E||E||E|
oz |84]| =L o=
SliderStep EE| [1x2 double array] -
@ Indent nested functions &
Style radicbutton T -

To display the & character in a label, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

The radio button accommodates only a single line of text. If you specify more than one line, only
the first line is shown. If you create a radio button that is too narrow to accommodate the
specified String property value, MATLAB software truncates the value with an ellipsis.

i@ Indent ne...

Create the radio button with the button selected by setting its Value property to the value of its
Max property (default is 1). Set Value to Min (default is 0) to leave the radio button unselected.
Correspondingly, when the user selects the radio button, the software sets Value to Max, and to
Min when the user deselects it.

If you want to set the position or size of the component to an exact value, then modify its
Position property.

To add an image to a radio button, assign the button's CData property an m-by-n-by-3 array of
RGB values that defines a truecolor image. You must do this programmatically in the opening
function of the code file. For example, the array img defines a 16-by-24-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

img = rand(16,24,3);
set(handles.radiobuttonl, 'CData',img);

Add Components to the GUIDE Layout Area

To manage exclusive selection of radio buttons and toggle buttons, put them in a button group.
See “Button Group” on page 18-24 for more information.

Check Box

To create a check box with label Display file extension that is initially checked, as shown in this
figure:

4| Figure 1 — O *
File Edit View Insert Tools Desktop Window Help ~

Udde @ 08| K[E

Dizplay file extension

* Specify the check box label by setting the St ring property to the desired label, in this case,
Display file extension.

@ Inspector: matlab.ui.control.UIControl E'@
2z (B4 =i =
Min 0. F
Position [20 2060 20]
SliderStep EE‘ [1x2 double array] &
Style checkbox =
Tan s

To display the & character in a label, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

The check box accommodates only a single line of text. If you specify a component width that is
too small to accommodate the specified St ring property value, MATLAB software truncates the
value with an ellipsis.

i |"'.

‘4 Figure 1 |.‘:' (=l 2

File Edit View Insert Tools Desktop Window Help

Odde | RKODEA-| ~

Dizplay fil...

18-13

18 Lay Out a Ul Using GUIDE

18-14

Create the check box with the box checked by setting the Value property to the value of the Max
property (default is 1). Set Value to Min (default is 0) to leave the box unchecked.
Correspondingly, when the user clicks the check box, the software sets Value to Max when the
user checks the box and to Min when the user clears it.

If you want to set the position or size of the component to an exact value, then modify its
Position property.

Edit Text
To create an edit text component that displays the initial text Enter your name here, as shown in
this figure:

4. Figure 1 — O >

File Edit View Insert Tools Desktop Window Help ¥
o =h &
N de |2

OE k[E

Enter your name here.

Specify the text to be displayed when the edit text component is created by setting the String
property to the desired value, in this case, Enter your name here.

(=] O |uSa)

@ Inspector: matlab.ui.control. UIControl

281wl

Position [20 2060 20] &
SliderStep EE| [1x2 double array] &
String EJ| Enteryour name here., &
Tag @

To display the & character in a label, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

To enable multiple-line input, specify the Max and Min properties so that their difference is
greater than 1. For example, Max = 2, Min = 0. Max default is 1, Min default is 0. MATLAB
software wraps the displayed text and adds a scroll bar if necessary. On all platforms, when the
user enters a multiline text box via the Tab key, the editing cursor is placed at its previous location
and no text highlights.

Add Components to the GUIDE Layout Area

4 Figure 1 — O *

File Edit View Insert Tools Desktop Window Help

Ddde @ 08| KE

Enter vour name and &
address here.

If Max-Min is less than or equal to 1, the edit text component allows only a single line of input. If
you specify a component width that is too small to accommodate the specified text, MATLAB
displays only part of that text. The user can use the arrow keys to move the cursor through the
text. On all platforms, when the user enters a single-line text box via the Tab key, the entire
contents is highlighted and the editing cursor is at the end of the text.

4| Figure 1 — O >

File Edit View Insert Tools Desktop Window Help E

Ddde @ 08| E

Enter yvour r

» If you want to set the position or size of the component to an exact value, then modify its
Position property.

* You specify the text font to display in the edit box by typing the name of a font residing on your
system into the FontName entry in the Property Inspector. On Microsoft® Windows platforms, the
default isMS Sans Serif; on Macintosh and UNIX® platforms, the default is Helvetica.

Tip To find out what fonts are available, type uisetfont at the MATLAB prompt; a dialog
displays containing a list box from which you can select and preview available fonts. When you
select a font, its name and other characteristics are returned in a structure, from which you can
copy the FontName and paste it into the Property Inspector. Not all fonts listed may be available
on other systems.

Static Text

To create a static text component with text Select a data set, as shown in this figure:

18-15

18 Lay Out a Ul Using GUIDE

18-16

4| Figure 1 — O et

File Edit View Inset Tools Desktop Window Help o

Ddde @ 08 KE

Select a data set.

» Specify the text that appears in the component by setting the component String property to the
desired text, in this case Select a data set.

@ Inspector: matlab.ui.control. UIControl EI@
B (4 =1 =t
Min

0.0 P -
Position [20 20 60 20]
SliderStep EE| [1x2 double array] &
@ Select a data set. -
Style text -

To display the & character in a list item, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

If your component is not wide enough to accommodate the specified value, MATLAB wraps the
displayed text.

Select a data
zet.

+ Ifyou want to set the position or size of the component to an exact value, then modify its
Position property.

* You can specify a text font, including its FontName, FontWeight, FontAngle, FontSize, and
FontUnits properties. For details, see the previous topic, “Edit Text” on page 18-14.

Pop-Up Menu

To create a pop-up menu (also known as a drop-down menu or combo box) with items one, two,
three, and four, as shown in this figure:

Add Components to the GUIDE Layout Area

4| Figure 1 — O >
File Edit View Insert Tools Desktop Window Help

Ddde @ 0B KE

one I

two
three
four

* Specify the pop-up menu items to be displayed by setting the String property to the desired
items. Click the

button to the right of the property name to open the Property Inspector editor.

@ Inspector: matlab.ui.control.JIControl E @
2= (80 ==t

Position [20 20 60 20] o
SliderStep ﬂ [1x2 double array] &
EE = - ,
Sty
e String =
Tag
one
two
three
four
|
’ QK] ’ Cancel]

18-17

18 Lay out a Ul Using GUIDE

18-18

To display the & character in a menu item, use two & characters. The words remove, default,
and factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

If the width of the component is too small to accommodate one or more of the menu items,
MATLAB truncates those items with an ellipsis.

» To select an item when the component is created, set Value to a scalar that indicates the index of
the selected list item, where 1 corresponds to the first item in the list. If you set Value to 2, the
menu looks like this when it is created:

e

4 Figure 1 l = | (=] |ﬁ]
File Edit VYiew Insert Tools Desktop Window Help

Ddde | | RKXODEL-E |0 7

two i

. o

» Ifyou want to set the position and size of the component to exact values, then modify its
Position property. The height of a pop-up menu is determined by the font size. The height you
set in the position vector is ignored.

* The pop-up menu does not let you add a label. Use a “Static Text” on page 18-15 component to
label the pop-up menu.

List Box

To create a list box with items one, two, three, and four, as shown in this figure:

Add Components to the GUIDE Layout Area

4| Figure 1 — O >
File Edit View Insert Tools Desktop Window Help

Ddde (|0 & E

» Specify the list of items to be displayed by setting the String property to the desired list. Use the

Property Inspector editor to enter the list. You can open the editor by clicking the E button to

the right of the property name.

@Inspedur: ratlab.ui.control.UICantrol E@
2z (81 =i =

Position [20 20 60 20] m
SliderStep ﬂ [1x2 double array] &

EEr I =) o s
Styl
tyle String @

Tag

one
two
three
four

| ok || cancel |

To display the & character in a label, use two & characters. The words remove, default, and

factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \ remove yields remove.

If the width of the component is too small to accommodate one or more of the specified list items,

MATLAB software truncates those items with an ellipsis.

18-19

18 Lay Out a Ul Using GUIDE

18-20

» Specify selection by using the Value property together with the Max and Min properties.

To select a single item when the component is created, set Value to a scalar that indicates the
index of the selected list item, where 1 corresponds to the first item in the list.

To select more than one item when the component is created, set Value to a vector of indices
of the selected items. Value = [1,3] results in the following selection.

4 Figure 1 — O *
File Edit View Insert Tools Desktop Window Help

Ddde @ 08| KE

tWwo

four

To enable selection of more than one item, you must specify the Max and Min properties so that
their difference is greater than 1. For example, Max = 2, Min = 0. Max defaultis 1, Min
default is 0.

If you want no initial selection, set the Max and Min properties to enable multiple selection,
i.e.,, Max - Min > 1, and then set the Value property to an empty matrix [].

» If the list box is not large enough to display all list entries, you can set the ListBoxTop property
to the index of the item you want to appear at the top when the component is created.

» Ifyou want to set the position or size of the component to an exact value, then modify its
Position property.

» The list box does not provide for a label. Use a “Static Text” on page 18-15 component to label the
list box.

Toggle Button

To create a toggle button with label Left/Right Tile, as shown in this figure:

File

4 Figure 1 — O >

Ddde @ 08 E

Edit View Insert Tools Desktop Window Help

Left/Right Tile

Add Components to the GUIDE Layout Area

Specify the toggle button label by setting its String property to the desired label, in this case,
Left/Right Tile.

@ Inspector: matlab.ui.control JIControl E@
22 (81 vl =

Min 0.0 ¢ "
Position [20 20 &0 20]

SliderStep Eﬂ [1x2 double array] P

ET I)| eftrRight Tile o

Style togglebutton |

To display the & character in a label, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash
character (\). For example, \remove yields remove.

The toggle button accommodates only a single line of text. If you specify more than one line, only
the first line is shown. If you create a toggle button that is too narrow to accommodate the
specified String value, MATLAB truncates the text with an ellipsis.

Left/Right ...

Create the toggle button with the button selected (depressed) by setting its Value property to the
value of its Max property (default is 1). Set Value to Min (default is 0) to leave the toggle button
unselected (raised). Correspondingly, when the user selects the toggle button, MATLAB software
sets Value to Max, and to Min when the user deselects it. The following figure shows the toggle
button in the depressed position.

e

4 Figure 1 l = | (=] |_ihl
File Edit VYiew Inset Tools Desktop Window Help

Ddde | | AKXODEA- || »

Left/Right Tile

L A

If you want to set the position or size of the component to an exact value, then modify its
Position property.

To add an image to a toggle button, assign the button's CData property an m-by-n-by-3 array of
RGB values that defines a truecolor image. You must do this programmatically in the opening
function of the code file. For example, the array img defines a 16-by-64-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

18-21

18 Lay Out a Ul Using GUIDE

18-22

img = rand(16,64,3);
set(handles.togglebuttonl, 'CData’',img);

where togglebuttonl is the toggle button's Tag property.

To manage exclusive selection of radio buttons and toggle buttons, put them in a button group.
See “Button Group” on page 18-24 for more information.

Panels and Button Groups

Panels and button groups are containers that arrange UI components into groups. If you move the
panel or button group, its children move with it and maintain their positions relative to the panel or
button group.

To define panels and button groups, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the Property Inspector by
selecting View > Property Inspector or by clicking the Property Inspector button .

2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of panels and button groups and offer a simple
example for each component.

* “Commonly Used Properties” on page 18-22
* “Panel” on page 18-23
* “Button Group” on page 18-24

Commonly Used Properties

The most commonly used properties needed to describe a panel or button group are shown in the
following table:

Property Values Description

Position 4-element vector: [distance from |Size of the component and its
left, distance from bottom, location relative to its parent.
width, height].

Title Character vector (for example, |Component label.

'Start').

TitlePosition lefttop, centertop, Location of title in relation to
righttop, leftbottom, the panel or button group.
centerbottom, rightbottom.

Default is Llefttop.

Add Components to the GUIDE Layout Area

Property

Values

Description

Units

characters, centimeters,
inches, normalized, pixels,
points. Default is
characters.

Units of measurement used to
interpret the Position
property vector

For a complete list of properties and for more information about the properties listed in the table, see

the Uipanel and Uibuttongroup.

Panel

To create a panel with title My Panel as shown in the following figure:

4| Figure 1 — O >
File Edit View Insert Tools Desktop Window Help
Udde @ 0E8B| KE

My Panel

* Specify the panel title by setting the Title property to the desired value, in this case My Panel.

% |8 =2 =
ShadowColor
SizeChangedFen

TitlePosition

@ Inspector: matlab.ui.container.Panel

[T=

uipanel

Tag

lefttop

(=[O w3

18-23

18 Lay Out a Ul Using GUIDE

To display the & character in the title, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash character
(\). For example, \ remove yields remove.

» Specify the location of the panel title by selecting one of the available TitlePosition property
values from the pop-up menu, in this case lefttop. You can position the title at the left, middle,
or right of the top or bottom of the panel.

@lnspectm: matlab.ui.container.Panel E@
2= |40 vl =
ForegroundColor] -
HandleVisibility on >
HighlightColor 22|
Interruptible On
Position [0011]
ShadowColor @
SizeChangedFen e
Tag uipanell &=
Title EJ| My Panel &
FE
UIContextMenu centertop |
— righttop —
leftbottom
centerbottom
rightbottom

» Ifyou want to set the position or size of the panel to an exact value, then modify its Position
property.

Button Group

To create a button group with title My Button Group as shown in the following figure:

18-24

Add Components to the GUIDE Layout Area

4| Figure 1 — O >

Insert Tools Desktop Window Help

OEE k[E

File Edit

Udd=e | @

View

My Button Group

» Specify the button group title by setting the Title property to the desired value, in this case My

Button Group.

@ Inspector: matlab.ui.container.ButtonGroup

e

e ————

SelectionChangedFeon
ShadowColor
SizeChangechn

|

uibuttongroupl

LN =) My utton Group

TitlePosition lefttop

[=][O w3

To display the & character in the title, use two & characters. The words remove, default, and
factory (case sensitive) are reserved. To use one of these as a label, prepend a backslash

characters (\). For example, \remove yields remove.

» Specify the location of the button group title by selecting one of the available TitlePosition
property values from the pop-up menu, in this case lefttop. You can position the title at the left,

middle, or right of the top or bottom of the button group.

18-25

18 Lay Out a Ul Using GUIDE

18-26

@lnspedon rnatlab.ui.container.ButtonGroup EI@
2= |80 v =
SelecticnChangedFecn 3
[+ ShadowColor @/
SizeChangedFen &
Tag uibuttongroupl &
Title EJ| My Button Group ¢?|E|
etop |\ |
centertop ——
righttop
leftbottom
centerbottom
rightbottom

» Ifyou want to set the position or size of the button group to an exact value, then modify its
Position property.
Axes

Axes allow you to display graphics such as graphs and images using commands such as: plot, surf,
line, bar, polar, pie, contour, and mesh.

To define an axes, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the Property Inspector by
selecting View > Property Inspector or by clicking the Property Inspector buttonE.

2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of axes and offer a simple example.

* “Commonly Used Properties” on page 18-26
* “Create Axes” on page 18-27

Commonly Used Properties

The most commonly used properties needed to describe an axes are shown in the following table:

Property Values Description
NextPlot add, replace, Specifies whether plotting adds
replacechildren. Defaultis |graphics, replaces graphics and
replace resets axes properties to
default, or replaces graphics
only.

Add Components to the GUIDE Layout Area

characters, inches, pixels,
points. Default is
normalized.

Property Values Description

Position 4-element vector: [distance from |Size of the component and its
left, distance from bottom, location relative to its parent.
width, height].

Units normalized, centimeters, Units of measurement used to

interpret position vector

For a complete list of properties and for more information about the properties listed in the table, see

Axes.

See commands such as the following for more information on axes objects: plot, surf, line, bar,
polar, pie, contour, imagesc, and mesh.

Many of these graphing functions reset axes properties by default, according to the setting of its
NextPlot property, which can cause unwanted behavior, such as resetting axis limits and removing
axes context menus and callbacks. See “Create Axes” on page 18-27 for information about setting

the NextPlot property.

Create Axes

Here is an axes in a GUIDE app:

E untitled

0.8
0.6
0.4

0.2

0.4

0.6

0.8 1

Use these guidelines when you create axes objects in GUIDE:

» Allow for tick marks to be placed outside the box that appears in the Layout Editor. The axes

above looks like this in the layout editor; placement allows space at the left and bottom of the axes
for tick marks. Functions that draw in the axes update the tick marks appropriately.

18-27

18 Lay out a Ul Using GUIDE

18-28

7] untitled.fig =5 (E=H =5

File Edit View Layout Teols Help
NE@ $2R9 0 2BHhd Q% P

[k Select

’ Push Button

aem 5lider

#® Radic Button
EA Check Box

el Edit Tesxt

T Static Text

Toggle Butten
Ed Table
iﬂ Axes

[T Panel

|E Button Group
=X ActiveX Control

]

|
l l
l |
l l
l |
l l
’ =3 Pop-up Menu l
[EH Listbox |
l |
l l
l |
l l
l |
l l

Tag: axesl Current Point: [67, 44] Position: [64, 52, 224, 201]

Use the title, xlabel, ylabel, zlabel, and text functions in the code file to label an axes
component. For example,

xlh = (axes_handle, 'Years"')

labels the X-axis as Years. The handle of the X-axis label is x1h.

The words remove, default, and factory (case sensitive) are reserved. To use one of these in
component text, prepend a backslash character (\). For example, \ remove yields remove.

If you want to set the position or size of the axes to an exact value, then modify its Position
property.

If you customize axes properties, some of them (or example, callbacks, font characteristics, and
axis limits and ticks) may get reset to default every time you draw a graph into the axes when the
NextPlot property has its default value of ' replace'. To keep customized properties as you
want them, set NextPlot to ' replacechildren’ in the Property Inspector, as shown here.

Add Components to the GUIDE Layout Area

@ Inspector: matlab.graphics.axis.fAxes E'@
2= |80 v =

LineStyleCrderIndex 1.0 |-

LineWidth 0.5 &

MinorGridAlgha 0.25 &

MinorGridAlphaMode auto >
MineorGridColor P

MinorGridLineStyle : v| |

replacechildren .

CuterPosition

new
PickableParts add
@)
[PlotBoxhspectRatio replace
PlotBoxbspectRaticMode .
replacechildren I%
Position (L& T9ET 5.0 L0002
Projection arthographic = i

Table

Tables enable you to display data in a two dimensional table. You can use the Property Inspector to
get and set the object property values.

Commonly Used Properties
The most commonly used properties of a table component are listed in the table below. These are

grouped in the order they appear in the Table Property Editor. Please refer to uitable
documentation for detail of all the table properties:

Group Property Values Description
Column ColumnName 1-by-n cell array of The header label of the
character vectors | column.

{'numbered'} | empty
matrix ([])

ColumnFormat Cell array of character |Determines display and
vectors editability of columns

ColumnWidth 1-by-n cell array or Width of each column in
'auto' pixels; individual

column widths can also
be set to 'auto’

ColumnEditable logical 1-by-n matrix | |Determines data in a
scalar logical value | column as editable
empty matrix ([])

Row RowName 1-by-n cell array of Row header label names
character vectors

18-29

18 Lay out a Ul Using GUIDE

Group Property Values Description
Color BackgroundColor n-by-3 matrix of RGB Background color of
triples cells
RowStriping {on} | off Color striping of table
TOWS
Data Data Matrix or cell array of |Table data.
numeric, logical, or
character data

Create a Table

To create a Ul with a table in GUIDE as shown, do the following:

4] untitled o B |-

Rate Amount Available Fixed/Ad|
1 6.1250 456.35 Fixed
57500 51023) Adjustable
7 §52.20 [Fixed

Drag the table icon on to the Layout Editor and right click in the table. From the table’s context
menu, select Table Property Editor. You can also select Table Property Editor from the Tools
menu when you select a table by itself.

18-30

Add Components to the GUIDE Layout Area

7] untitled fig =5 (E=H =5
File Edit View Layout Tools Help
NEH $§209 0 | a2Bhd D% b
[k Select] i
[Push Button]
| Slider] ! 2

, 1 Cut Ctrl+X
[® Radio Button] 2 Copy Curlac
[[Check Box] 3 CtrleV

. 4 tri+V
[Il Edit Text] Clear
[TET. Static Text] Duplicate Ctrl+D

=3 Pog-up M
[= optp eny] Bring to Front Ctrl+F b
[Ell Listbox] Send to Back Ctrl+B
[Teggle Button]
Object Browser
[B Table] Editor
[i{ﬂh}ces]
[(&l Panel] View Callbacks
[|E Button Group] Property Inspector
[=X ActiveX Control] Table Property Editor... I}
i
4 3

Tag: uitablel Current Point: [202, 206] Position: [26, 75, 412, 150]

Use the Table Property Editor

When you open it this way, the Table Property Editor displays the Column pane. You can also open it

from the Property Inspector by clicking one of its Table Property Editor icons — in which case the

Table Property Editor opens to display the pane appropriate for the property you clicked.

Clicking items in the list on the left hand side of the Table Property Editor changes the contents of
the pane to the right . Use the items to activate controls for specifying the table's Columns, Rows,
Data, and Color options.

The Columns and Rows panes each have a data entry area where you can type names and set
properties on a per-column or per-row basis. You can edit only one row or column definition at a time.
These panes contain a vertical group of five buttons for editing and navigating:

Button Purpose Accelerator Keys
Windows Macintosh

Insert Inserts a new column or row definition entry |Insert Insert
below the current one

Delete Deletes the current column or row definition |Ctrl+D Cmd+D
entry (no undo)

Copy Inserts a Copy of the selected entry in a new |Ctrl+P Cmd+P
row below it

18-31

18 Lay Out a Ul Using GUIDE

Button Purpose Accelerator Keys
Windows Macintosh
Up Moves selected entry up one row Ctrl+ Cmd+
uparrow uparrow
Down Moves selected entry down one row Ctrl+ Cmd+
downarrow downarrow

Keyboard equivalents only operate when the cursor is in the data entry area. In addition to those
listed above, typing Ctrl+T or Cmd+T selects the entire field containing the cursor for editing (if the
field contains text).

To save changes to the table you make in the Table Property Editor, click OK, or click Apply commit

changes and keep on using the Table Property Editor.

Set Column Properties

Click Insert to add two more columns.

ﬁ Table Property Editor

Columns
Rows
Data
Colors

Columns

7 Unless the "Show names entered below..." option is selected, the number of columns appearing in the table is determined

" by the number of columns in Data.

Column Headers

) Do not show column headers

@ Show numbered column headers

7) Show names entered below as the colurmn headers:

Column Definitions

=

#
1

Auto Width
| |

MName Width (px)

Editable

O

Format

i

+ Insert

| Let MATLAE Choose]

2

| |

O

| Let MATLAR Choose |

II

EE} Copy

= Delete

»

Down

& Edit

J

Cancel

J J

Apply

Help

18-32

Select Show names entered below as the column headers and set the ColumnName by entering
Rate, Amount, Available, and Fixed/Adj in Name group. for the Available and Fixed/Adj columns set
the ColumnEditable property to on. Lastly set the ColumnFormat for the four columns

Add Components to the GUIDE Layout Area

@Table Property Editor
Columns Columns
Rows
Data i To display a colurmn name over multiple lines (i.e, to wrap the text to the next line), use a '|' to insert a line break when

Colors * typing in the Name field.

Ceolumn Headers
Select this option to
display column names

() Do not show column headers

column headers

ow names entered below as the column headers:

Column Definitions

Mame Auto Width Width () Editable Format
1 |JRate ¥] il Numeric
2 JAmount] _ 1 |l Custom...
3 JAvailable] || Let MATLAB Choose _
Fixed/Adj [¥] !I Choice List...
e T + up
4 Make third Yoo
Enter column and fourth Specify the -
names here columns display of the O Edit..
editable column here
l aK] ’ Cancel] [Apply l l Help

For the Rate column, select Numeric. For the Amount Column select Custom and in the Custom

Format Editor, choose Bank.

18-33

18 Lay Out a Ul Using GUIDE

ﬂ Custom Format Editor @

Select an output format for numeric values:

short 31416 Scaled fixed point with 4 digits precision

lzng 3.14159265358979 Scaled fixed point with 7/14 digits precision

shorte 31416e+000 Flzating point with 4 digits precision

long e 3.141582653589793e+000 Floating point with 7/14 digits precision

shortg 31416 Best of fixed or floating point with 4 digits precision
long g 3.14159265358979 Best of fixed or floating point with 7/14 digits precisicn
short eng 3.1416e2+000 Engineering format with 4 digits precision

long eng 314159265358979e+000 Engineering format with 7/14 digits precision

bank 314 Fied dollars and cents

rat 355/113 Ratio of small integers

+ + + for positive, - for negative, blank for zero
Example: Pldisplaysas 314

QK] ’ Cancel

Leave the Available column at the default value. This allows MATLAB to chose based on the value of
the Data property of the table. For the Fixed/Adj column select Choice List to create a pop-up
menu. In the Choice List Editor, click Insert to add a second choice and type Fixed and Adjustable as
the 2 choices.

™4} Chaice List Editor

Enter cpticns to appear in the choice list:

¢ Choice Insert

1 Fixed c
Adjustable] orY

Delete

L

AR

Down

O] ’ Cancel

18-34

Add Components to the GUIDE Layout Area

Note For a user to select items from a choice list, the ColumnEditable property of the column that
the list occupies must be set to 'true'. The pop-up control only appears when the column is
editable.

Set Row Properties

In the Row tab, leave the default RowName, Show numbered row headers.

ﬁ Table Property Editor @
Columns Rows
Data D Unless the "Show names entered below...” option is selected, the number of rows appearing in the table is determined by the
Colors " number of rows in Data.

) Do not show row headers

@ Show numbered row headers

() Show names entered below as the row headers:

Name + Insert

=2 Copy

= Delete

%+ up

‘ Down

L L LY

il

ok || cancel || Apply || Hep

Set Data Properties

Use the Data property to specify the data in the table. Create the data in the command window
before you specify it in GUIDE. For this example, type:

dat = {6.125, 456.3457, true, 'Fixed';...
6.75, 510.2342, false, 'Adjustable';...
7, 658.2, false, 'Fixed';};

In the Table Property Editor, select the data that you defined and select Change data value to the
selected workspace variable below.

18-35

18 Lay Out a Ul Using GUIDE

@ Table Property Editor
Columns Data
Rows
Data = Loading data from a workspace variable creates a static copy of the data. Changes to the original variable will not be
Colors * reflected in the table.

() Do not set data value and leave the table empty
() Keep the current data value

@ Change data value to the selected workspace variable below

Name Value Size Class
m 3w cell 3xd cell

4 L1 2

ok || Cancel || Apply || Hep

Set Color Properties

Specify the BackgroundColor and RowStriping for your table in the Color tab.

18-36

Add Components to the GUIDE Layout Area

ﬁ Table Property Editor IEI
Columns Colors
Rows
Data ¢y The row striping effect can make it easier for users to read the data in your table. The twe backgreund colors are used to
7 alternately shade the table rows.

Background Celor

) Mo row striping effect

A

All Rows: Background:

@ Show row striping effect

Odd Rows: Background:

L

Even Rows: Background:

4

Foreground Color

]

All Rows: Foreground:

| ok || canca || Apply |[Hep

You can change other uitable properties to the table via the Property Inspector.

Resize GUIDE Ul Components

You can resize components in one of the following ways:

* “Drag a Corner of the Component” on page 18-37
* “Set the Component's Position Property” on page 18-37

Drag a Corner of the Component

Select the component you want to resize. Click one of the corner handles and drag it until the
component is the desired size.

= Push Eluttun . -— Click and drag

Set the Component's Position Property

Select one or more components that you want to resize. Then select View > Property Inspectoror
click the Property Inspector button =,

18-37

18 Lay out a Ul Using GUIDE

1 In the Property Inspector, scroll to the Units property and note whether the current setting is
characters or normalized. Click the button next to Units and then change the setting to
inches from the pop-up menu.

18-38

2

Click the + sign next to Position. The Property Inspector displays the elements of the

Position property.

@ Inspector: matlab.ui.control.UIControl E'@
2 (8] w2 =
e e —
Interruptible On Il
KeyPressFen &
KeyReleaseFcn e &
ListboxTop 1.0 &
Max 1.0 &
Min 0.0 &
Position [272904171.031 0417]
SliderStep ﬂ [1x2 double array] &
String @ Push Button @3
Style pushbutton -
Tag pushbuttonl &
TooltipString &
UIContextMenu <MNonex» 7=
D inche
UserData centirmeters
Value characters 3
Visible normalized i
points L
pixels

Add Components to the GUIDE Layout Area

@Inspectnr: matlab.ui.control. UIControl |E||E||E|
2= (80 v =
Maz 1.0 & .
Min 0.0 &
CEET 272904171031 0417)
X 2.7291 666666666665 &
¥ 0.416666666606666663 &
width 1.02125 &
height 0.41666666666666663 &=
SliderStep EE| [1x2 double array] &
String EJ| Push Button &
Style pushbutton T

3 Type the width and height you want the components to be.
4 Reset the Units property to its previous setting, either characters or normalized.
To select multiple components, they must have the same parent. That is, they must be contained in

the same figure, panel, or button group. Setting the Units property to characters (nonresizable
Uls) or normalized (resizable Uls) gives the UI a more consistent appearance across platforms.

See Also

Related Examples

. “Ways to Build Apps” on page 1-2

. “Create a Simple App Using GUIDE” on page 3-2

. “Write Callbacks in GUIDE” on page 19-2

. “Callbacks for Specific Components” on page 19-14

. “Lay Out Apps in App Designer Design View” on page 6-2
. “App Building Components” on page 5-2

18-39

18 Lay out a Ul Using GUIDE

Create Menus for GUIDE Apps

In this section...

“Menus for the Menu Bar” on page 18-40

“Context Menus” on page 18-47

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

You can use GUIDE to create menu bars (containing pull-down menus) as well as context menus that
you attach to components. You can create both types of menus using the Menu Editor. Access the

Menu Editor from the Tools menu or click the Menu Editor button @

B8 Menu Editor - O *
BEeEf-—1T1|X

Properties
To add a menu, click here or on P

the New Menu button
on the toolbar

Mothing selected.

i Context Menus

oK Help

Menus for the Menu Bar

* “How Menus Affect Figure Docking” on page 18-41

* “Add Standard Menus to the Menu Bar” on page 18-42
* “Create a Menu” on page 18-42

* “Add Items to a Menu” on page 18-43

18-40

Create Menus for GUIDE Apps

* “Additional Drop-Down Menus” on page 18-45
* “Cascading Menus” on page 18-45

When you create a drop-down menu, GUIDE adds its title to the menu bar. You then can create menu
items for that menu. Each menu item can have a cascading menu, also known as a submenu, and
these items can have cascading menus, and so on.

How Menus Affect Figure Docking

By default, when you create a UI with GUIDE, it does not create a menu bar for that Ul You might
not need menus for your U, but if you want the user to be able to dock or undock the UI window, it
must contain a menu bar or a toolbar. This is because docking is controlled by the docking icon, a
small curved arrow near the upper-right corner of the menu bar or the toolbar, as the following
illustration shows.

- | pod

Figure windows with a standard menu bar also have a Desktop menu from which the user can dock
and undock them.

To display the docking arrow and the Desktop > Dock Figure menu item, use the Property
Inspector to set the figure property DockControls to 'on'. You must also set the MenuBar and/or
ToolBar figure properties to ' figure' to display docking controls.

The WindowStyle figure property also affects docking behavior. The default is 'normal’, but if you
change it to 'docked’, then the following applies:

* The UI window opens docked in the desktop when you run it.

* The DockControls property is set to 'on' and cannot be turned off until WindowStyle is no
longer set to 'docked'.

* Ifyou undock a UI window created with WindowStyle 'docked’, it will have not have a docking
arrow unless the figure displays a menu bar or a toolbar (either standard or customized). When it
has no docking arrow, users can undock it from the desktop, but will be unable to redock it there.

However, when you provide your own menu bar or toolbar using GUIDE, it can display the docking
arrow if you want the UI window to be dockable.

Note Uls that are modal dialogs (figures with WindowStyle set to 'modal') cannot have menu
bars, toolbars, or docking controls.

For more information, see the DockControls, MenuBar, ToolBar, and WindowStyle property
descriptions in Figure.

18-41

18

Lay Out a Ul Using GUIDE

Add Standard Menus to the Menu Bar

The figure MenuBar property controls whether your UI displays the MATLAB standard menus on the
menu bar. GUIDE initially sets the value of MenuBar to none. If you want your UI to display the
MATLAB standard menus, use the Property Inspector to set MenuBar to figure.

» If the value of MenuBar is none, GUIDE automatically adds a menu bar that displays only the
menus you create.

» If the value of MenuBar is figure, the UI displays the MATLAB standard menus and GUIDE adds
the menus you create to the right side of the menu bar.

In either case, you can enable the user to dock and undock the window by setting the figure's
DockControls property to 'on'.

Create a Menu

1 Start a new menu by clicking the New Menu button in the toolbar. A menu title, Untitled 1,
appears in the left pane of the dialog box.

B8 Menu Editor — O X
|=- - =1]| %
P rti
a menu, click here or on Nr?clﬁ'e |e5| ted
the New Menu button othing selected.

on the toolbar

oK Help

18-42

By default, GUIDE selects the Menu Bar tab when you open the Menu Editor.
2 Click the menu title to display a selection of menu properties in the right pane.

Create Menus for GUIDE Apps

Menu Editor — O *
E
EeE =11 X

Menu Properties

E File
. Text: |File

Tag: file_menul

Accelerator: Ctrl + Nane ~
[Separator above this item

[[] Check mark this item

Enable this itern

MenuSelectedFen: #automatic View

Mare Properties...

Menu Bar Context Menus

oK Help

3 Fill in the Text and Tag fields for the menu. For example, set Text to File and set Tag to
file menu. Click outside the field for the change to take effect.

Text is a text label for the menu item. To display the & character in a label, use two & characters.
The words remove, default, and factory (case sensitive) are reserved. To use one of these as
labels, prepend a backslash character (\). For example, \ remove yields remove.

Tag is a character vector that serves as an identifier for the menu object. It is used in the code to
identify the menu item and must be unique in your code file.

Add Items to a Menu
Use the New Menu Item tool to create menu items that are displayed in the drop-down menu.

1 Add an Open menu item under File, by selecting File then clicking the New Menu Item
button in the toolbar. A temporary numbered menu item label, Untitled, appears.

18-43

18 Lay out a Ul Using GUIDE

B8 Menu Editor — O X
BeEl-=1T 1%

Menu Properties
e

Text: |File

Tag: file_menul

Accelerator: Ctrl + Nane ~
[Separator above this item

[[] Check mark this item

Enable this itern

MenuSelectedFen: #automatic View

Mare Properties...

Menu Bar Context Menus

oK Help

2 Fill in the Text and Tag fields for the new menu item. For example, set Text to Open and set Tag
to menu_file open. Click outside the field for the change to take effect.

B8 Menu Editor — O X
BEEmEl~=1 1%

Menu Properties
Text: | Open

Tag: menu_file_npenl

Accelerator: Ctrl + Nane ~
[Separator above this item

[[] Check mark this item

Enable this itern

MenuSelectedFen: #automatic View

Mare Properties...

Menu Bar Context Menus

oK Help

You can also

18-44

Create Menus for GUIDE Apps

* Choose an alphabetic keyboard accelerator for the menu item with the Accelerator pop-up menu.
In combination with Ctrl, this is the keyboard equivalent for a menu item that does not have a
child menu. Note that some accelerators may be used for other purposes on your system and that
other actions may result.

* Display a separator above the menu item by checking Separator above this item.

» Display a check next to the menu item when the menu is first opened by checking Check mark
this item. A check indicates the current state of the menu item. See the example in “Add Items to
the Context Menu” on page 18-48.

* Enable this item when the menu is first opened by checking Enable this item. This allows the
user to select this item when the menu is first opened. If you clear this option, the menu item
appears dimmed when the menu is first opened, and the user cannot select it.

» Specify the Callback function that executes when the users selects the menu item. If you have not
yet saved the Ul, the default value is %sautomatic. When you save the Ul, and if you have not
changed this field, GUIDE automatically sets the value using a combination of the Tag field and
the Ul file name. See “Menu Item” on page 19-21 for more information about specifying this field
and for programming menu items.

The View button displays the callback, if there is one, in an editor. If you have not yet saved the
UI, GUIDE prompts you to save it.

* Open the Property Inspector, where you can change all menu properties, by clicking the More
Properties button. For detailed information about the properties, see Uimenu.

See “Menu Item” on page 19-21 and “How to Update a Menu Item Check” on page 19-23 for
programming information and basic examples.

Additional Drop-Down Menus

To create additional drop-down menus, use the New Menu button in the same way you did to create
the File menu. For example, the following figure also shows an Edit drop-down menu.

Cascading Menus

To create a cascading menu, select the menu item that will be the title for the cascading menu, then
click the New Menu Item button. In the example below, Edit is a cascading menu.

18-45

18 Lay out a Ul Using GUIDE

B8 Menu Editar — O >
BEeEmE|«=11|X

Menu Properties

File ;
= Open Text: to file
= Close Tag: |edit_copy_tofild
Accelerator: Ctrl + Mone ~
E-E4 Copy [[] Separator above this itemn

~HE to clipboard

'_E' m— [[] Check mark this item

Enable this item

MenuSelectedFen: Sautomatic View

More Properties...

Menu Bar Context Menus

oK Help

See “Menu Item” on page 19-21 for information about programming menu items.

The following Menu Editor illustration shows three menus defined for the figure menu bar.

B8 Menu Editar — O >
BEeEmE|«=11|X

Menu Properties

= [E] File
. Text: | Tool Palette
Tag: |view_toclpalette

Accelerator: Ctrl + Mone ~

(] Separator above this item

=i to clipboard
=B o file

=-E] vi

"";Taenubar Enable this item

Toolbar

------ S Tool Palette

] Check mark this item

MenuSelectedFen: Yautomatic View

Mare Properties...

Menu Bar Context Menus

oK Help

When you run the app, the menu titles appear in the menu bar.

18-46

Create Menus for GUIDE Apps

4 myui — >
File Edit View £
Open

L

Close

Save

Context Menus

A context menu is displayed when a user right-clicks the object for which the menu is defined. The
Menu Editor enables you to define context menus and associate them with objects in the layout. The
process has three steps:

1 “Create the Parent Menu” on page 18-47
2 “Add Items to the Context Menu” on page 18-48
3 “Associate the Context Menu with an Object” on page 18-51

See “Menus for the Menu Bar” on page 18-40 for information about defining menus in general. See
“Menu Item” on page 19-21 for information about defining local callback functions for your menus.

Create the Parent Menu

All items in a context menu are children of a menu that is not displayed on the figure menu bar. To
define the parent menu:

1 Select the Menu Editor's Context Menus tab and select the New Context Menu button from the
toolbar.

18-47

18 Lay out a Ul Using GUIDE

B8 Menu Editor — O X

|=-| ¢1.p‘:; b4
L3 [New Context Menu]

To add a menu, click here or on
the New Context Menu button
on the toolbar

Properties
MNothing selected.

Menu Bar

oK Help

2 Select the menu, and in the Tag field type the context menu tag (axes context menu in this
example).

B Menu Editor - O *
BeEEl-=1 1%

Context Menu Properties
- ¥E] axes_context_menu
Tag: axes_cnntext_menu|

ContextMenuOpeningFon: %eautomatic | View

More Properties...

Menu Bar Context Menus

oK Help

Add Items to the Context Menu

Use the New Menu Item button to create menu items that are displayed in the context menu.

18-48

Create Menus for GUIDE Apps

1

@ Menu Editor

'k =1 1 X

Menu Bar Context Menus

Context Menu Properties

Tag: |axes_context_menu

- O >

ContextMenuQpeningFcn: 2automatic | View

0K

Mare Properties...

Help

Add a Blue background color menu item to the menu by selecting axes context _menu and
clicking the New Menu Item tool. A temporary numbered menu item label, Untitled, appears.

2 Fill in the Text and Tag fields for the new menu item. For example, set Text to Blue
background color and set Tag to blue background. Click outside the field for the change to

take effect.

18-49

18 Lay out a Ul Using GUIDE

Menu Editor — O *
E
BeEH =11 X

—1E] axes_context_menu
&4 Blue background color

Menu Bar Context Menus

Menu Properties

Text: |Blue background celor
Tag: blue_backgroundl
Accelerator: Ctrl +| MNone

[Separator above this item
[[] Check mark this item

Enable this item

MenuSelectedFen: #automatic

Mare Properties...

oK Help

18-50

You can also modify menu items in these ways:

Display a separator above the menu item by checking Separator above this item.

Display a check next to the menu item when the menu is first opened by checking Check mark
this item. A check indicates the current state of the menu item. See the example in “Add Items to
the Context Menu” on page 18-48. See “How to Update a Menu Item Check” on page 19-23 for a
code example.

Enable this item when the menu is first opened by checking Enable this item. This allows the
user to select this item when the menu is first opened. If you clear this option, the menu item
appears dimmed when the menu is first opened, and the user cannot select it.

Specify a Callback for the menu that performs the action associated with the menu item. If you
have not yet saved the UlI, the default value is sautomatic. When you save the Ul, and if you
have not changed this field, GUIDE automatically creates a callback in the code file using a
combination of the Tag field and the Ul file name. The callback's name does not display in the
Callback field of the Menu Editor, but selecting the menu item does trigger it.

You can also type a command into the Callback field. It can be any valid MATLAB expression or
command. For example, this command

set(gca, 'Color', 'y'")

sets the current axes background color to yellow. However, the preferred approach to performing
this operation is to place the callback in the code file. This avoids the use of gca, which is not
always reliable when several figures or axes exist. Here is a version of this callback coded as a
function in the code file:

function axesyellow Callback(hObject, eventdata, handles)
% hObject handle to axesyellow (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

Create Menus for GUIDE Apps

% handles structure with handles and user data (see GUIDATA)
set(handles.axesl, 'Color','y")

This code sets the background color of the axes with Tag axes1 no matter to what object the
context menu is attached to.

If you enter a callback value in the Menu Editor, it overrides the callback for the item in the code
file, if any has been saved. If you delete a value that you entered in the Callback field, the
callback for the item in the code file is executed when the user selects that item in the UI.

See “Menu Item” on page 19-21 for more information about specifying this field and for
programming menu items.

The View button displays the callback, if there is one, in an editor. If you have not yet saved the
UI, GUIDE prompts you to save it.

* Open the Property Inspector, where you can change all menu properties except callbacks, by
clicking the More Properties button. For detailed information about these properties, see
ContextMenu Properties.

Associate the Context Menu with an Object

1 In the Layout Editor, select the object for which you are defining the context menu.

2 Use the Property Inspector to set this object's ContextMenu property to the name of the desired
context menu.

The following figure shows the ContextMenu property for the axes object with Tag property axes1.

B Inspector: matlab.graphics.axis.Axes — O *
= | A m ¥ g
2= (5] =2 =
L UTUT T ETTTTLEX, I (=4
~
Colorscale linear -
Colormap BH [256x3 double array] &
Contextbenu «Mone> i
CreateFcn <MNones
CurrentPoint axes_context_menu I,\\y
DatahspectRatio [T11]
DatafspectRatioMode auto o
DeleteFcn @ &
FontAngle normal _

In the code file, complete the local callback function for each item in the context menu. Each callback
executes when a user selects the associated context menu item. See “Menu Item” on page 19-21 for
information on defining the syntax.

See “How to Update a Menu Item Check” on page 19-23 for programming information and basic
examples.

18-51

18 Lay out a Ul Using GUIDE

See Also

Related Examples

. “Write Callbacks in GUIDE” on page 19-2

. “Callbacks for Specific Components” on page 19-14
. “App Building Components” on page 5-2

18-52

Programming a GUIDE App

* “Write Callbacks in GUIDE” on page 19-2
» “Callbacks for Specific Components” on page 19-14
+ “Examples of GUIDE Apps” on page 19-27

19 Programming a GUIDE App

Write Callbacks in GUIDE

In this section...

“Callbacks for Different User Actions” on page 19-2

“GUIDE-Generated Callback Functions and Property Values” on page 19-4
“GUIDE Callback Syntax” on page 19-4

“Share Data Among GUIDE Callbacks” on page 19-5

“GUIDE Example: Share Slider Data Using guidata” on page 19-10
“GUIDE Example: Share Data Between Two Apps” on page 19-10

“GUIDE Example: Share Data Among Three Apps” on page 19-11
“Renaming and Removing GUIDE-Generated Callbacks” on page 19-13

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

Callbacks for Different User Actions

UI and graphics components have certain properties that you can associate with specific callback
functions. Each of these properties corresponds to a specific user action. For example, a uicontrol has
a property called Callback. You can set the value of this property to be a handle to a callback
function, an anonymous function, or a character vector containing a MATLAB expression. Setting this
property makes your app respond when the user interacts with the uicontrol. If the Callback
property has no specified value, then nothing happens when the user interacts with the uicontrol.

This table lists the callback properties that are available, the user actions that trigger the callback
function, and the most common UI and graphics components that use them.

19-2

Callback User Action Components That Use This

Property Property

ButtonDownFcn |End user presses a mouse button while |axes, figure, uibuttongroup,
the pointer is on the component or uicontrol, uipanel, uitable,
figure.

Callback End user triggers the component. For |uicontextmenu, uicontrol, uimenu
example: selecting a menu item,
moving a slider, or pressing a push
button.

CellEditCallba |End user edits a value in a table whose |uitable

ck cells are editable.

CellSelectionC |End user selects cells in a table. uitable

allback

Write Callbacks in GUIDE

Callback User Action Components That Use This
Property Property
ClickedCallbac |End user clicks the push tool or toggle |uitoggletool, uipushtool
k tool with the left mouse button.
CloseRequestFc |The figure closes. figure
n
CreateFcn Callback executes when MATLAB axes, figure, uibuttongroup,
creates the object, but before it is uicontextmenu, uicontrol,
displayed. uimenu, uipushtool, uipanel,
uitable, uitoggletool, uitoolbar
DeleteFcn Callback executes just before MATLAB |axes, figure, uibuttongroup,
deletes the figure. uicontextmenu, uicontrol,
uimenu, uipushtool, uipanel,
uitable, uitoggletool, uitoolbar
KeyPressFcn End user presses a keyboard key while |figure, uicontrol, uipanel,
the pointer is on the object. uipushtool, uitable, uitoolbar
KeyReleaseFcn |End user releases a keyboard key while [figure, uicontrol, uitable
the pointer is on the object.
OffCallback Executes when the State of a toggle |uitoggletool
tool changes to 'off'.
OnCallback Executes when the State of a toggle |uitoggletool
tool changes to 'on"'.
SizeChangedFcn |End user resizes a button group, figure, |figure, uipanel, uibuttongroup
or panel whose Resize property is
‘on'.
SelectionChang |End user selects a different radio uibuttongroup
edFcn button or toggle button within a button
group.
WindowButtonDo |End user presses a mouse button while |[figure
wnFcn the pointer is in the figure window.
WindowButtonMo |End user moves the pointer within the |figure
tionFcn figure window.
WindowButtonUp [End user releases a mouse button. figure
Fcn
WindowKeyPress |End user presses a key while the figure
Fcn pointer is on the figure or any of its
child objects.
WindowKeyRelea |End user releases a key while the figure
seFcn pointer is on the figure or any of its
child objects.
WindowScrollWh |End user turns the mouse wheel while |[figure
eelFcn the pointer is on the figure.

19-3

19 Programming a GUIDE App

19-4

GUIDE-Generated Callback Functions and Property Values
How GUIDE Manages Callback Functions and Properties

After you add a uicontrol, uimenu, or uicontextmenu component to your Ul, but before you save
it, GUIDE populates the Callback property with the value, %$automatic. This value indicates that
GUIDE will generate a name for the callback function.

When you save your Ul, GUIDE adds an empty callback function definition to your code file, and it
sets the control’s Callback property to be an anonymous function. This function definition is an
example of a GUIDE-generated callback function for a push button.

function pushbuttonl Callback(hObject,eventdata,handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

end

If you save this UI with the name, myui, then GUIDE sets the push button’s Callback property to
the following value:

@(hObject,eventdata)myui('pushbuttonl Callback',hObject,eventdata,guidata(hObject))

This is an anonymous function that serves as a reference to the function, pushbuttonl Callback.
This anonymous function has four input arguments. The first argument is the name of the callback
function. The last three arguments are provided by MATLAB, and are discussed in the section,
“GUIDE Callback Syntax” on page 19-4.

Note GUIDE does not automatically generate callback functions for other UI components, such as
tables, panels, or button groups. If you want any of these components to execute a callback function,
then you must create the callback by right-clicking on the component in the layout, and selecting an
item under View Callbacks in the context menu.

GUIDE Callback Syntax

All callbacks must accept at least three input arguments:

* hObject — The UI component that triggered the callback.

* eventdata — A variable that contains detailed information about specific mouse or keyboard
actions.

* handles — A struct that contains all the objects in the UIl. GUIDE uses the guidata function to
store and maintain this structure.

For the callback function to accept additional arguments, you must put the additional arguments at
the end of the argument list in the function definition.

The eventdata Argument

The eventdata argument provides detailed information to certain callback functions. For example, if
the end user triggers the KeyPressFcn, then MATLAB provides information regarding the specific
key (or combination of keys) that the end user pressed. If eventdata is not available to the callback
function, then MATLAB passes it as an empty array. The following table lists the callbacks and
components that use eventdata.

Write Callbacks in GUIDE

Callback Property Name Component
WindowKeyPressFcn figure
WindowKeyReleaseFcn

WindowScrollWheel

KeyPressFcn figure, uicontrol, uitable
KeyReleaseFcn figure, uicontrol, uitable
SelectionChangedFcn uibuttongroup
CellEditCallback uitable

CellSelectionCallback

Share Data Among GUIDE Callbacks

To create controls, menus, and graphics objects in your app that are interdependent, you must
explicitly share data with the parts of your app that need to access the component.

Method

Description

Requirements and Trade-Offs

Share UserData

Get or set property values directly
through the component object.

All UI components have a UserData
property that can store any MATLAB
data.

Requires access to the component
to set or retrieve the properties.

UserData holds only one variable
at a time, but you can store multiple
values as a struct array or cell
array.

Share Application
Data

Associate data with a specific
component using the setappdata
function. You can access it later using
the getappdata function.

Requires access to the component
to set or retrieve the application
data.

Can share multiple variables.

Use guidata

Share data with the figure window
using the guidata function.

Stores or retrieves the data through
any UI component.

Stores only one variable at a time,
but you can store multiple values as
a struct array or cell array.

Share UserData in GUIDE Apps

UI components contain useful information in their properties. For example, you can find the current
position of a slider by querying its Value property. In addition, all components have a UserData
property, which can store any MATLAB variable. All callback functions can access the value stored in
the UserData property as long as those functions can access the component.

To set up a GUIDE app for sharing slider data with the UserData property, perform these steps:

1 In the Command Window, type guide to open a new blank GUL

2 Display the names of the Ul components in the component palette:

a Select File > Preferences > GUIDE.
b Select Show names in component palette.

¢ Click OK.

19-5

19 Programming a GUIDE App

19-6

Select the push button tool from the component palette at the left side of the Layout Editor and
drag it into the layout area.

Select the slider tool from the component palette at the left side of the Layout Editor and drag it
into the layout area.

Select File > Save. Save the Ul as myslider.fig. MATLAB opens the code file in the Editor.

Set the initial value of the UserData property in the opening function, myslider OpeningFcn.
This function executes just before the Ul is visible to users.

In myslider OpeningFcn, insert these commands immediately after the command,
handles.output = hObject.

data = struct('val',0Q, 'diffMax',1);
set(handles.sliderl, 'UserData',data);

After you add the commands, myslider OpeningFcn looks like this.

function myslider OpeningFcn(hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
varargin command line arguments to junk (see VARARGIN)

o o® o° o° of

% Choose default command line output for myslider
handles.output = hObject;

data = struct('val',0, 'diffMax',1);
set(handles.sliderl, 'UserData',data);

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes myslider wait for user response
uiwait(handles.figurel);

[
“©

Notice that handles is an input argument to myslider OpeningFcn. The handles variable is
a structure that contains all the components in the Ul Each field in this structure corresponds to
a separate component. Each field name matches the Tag property of the corresponding
component. Thus, handles.sliderl is the slider component in this UI. The command,
set(handles.sliderl, 'UserData',data) stores the variable, data, in the UserData
property of the slider.

Add code to the slider callback for modifying the data. Add these commands to the end of the
function, sliderl Callback.

maxval = get(hObject, 'Max');

sval = get(hObject, 'Value');
diffMax = maxval - sval;

data = get(hObject, 'UserData');
data.val = sval;

data.diffMax = diffMax;

% Store data in UserData of slider
set(hObject, 'UserData’',data);

After you add the commands, sliderl Callback looks like this.

% --- Executes on slider movement.
function sliderl Callback(hObject, eventdata, handles)

Write Callbacks in GUIDE

9

hObject handle to sliderl (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o® o° o°

Hints: get(hObject, 'Value') returns position of slider
get(hObject, 'Min') and get(hObject, 'Max') to determine range of slider
maxval = get(hObject, 'Max');
sval = get(hObject, 'Value');
diffMax = maxval - sval;
data = get(hObject, 'UserData');
data.val = sval;
data.diffMax = diffMax;
% Store data in UserData of slider
set(hObject, 'UserData’',data);

o® o°

Notice that hObject is an input argument to the sliderl Callback function. hObject is
always the component that triggers the callback (the slider, in this case). Thus,

set(hObject, 'UserData',data), stores the data variable in the UserData property of the
slider.

Add code to the push button callback for retrieving the data. Add these commands to the end of
the function, pushbuttonl Callback.

% Get UserData from the slider

data = get(handles.sliderl, 'UserData');
currentval = data.val;

diffval = data.diffMax;
display([currentval diffvall);

After you add the commands, pushbuttonl Callback looks like this.

% --- Executes on button press in pushbuttonl.

function pushbuttonl Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get UserData from the slider

data = get(handles.sliderl, 'UserData');
currentval = data.val;

diffval = data.diffMax;
display([currentval diffvall);

This code uses the handles structure to access the slider. The command, data =
get(handles.sliderl, 'UserData'), gets the slider’'s UserData property. Then, the
display function displays the stored values.

Save your code by pressing Save in the Editor Toolstrip.

Share Application Data in GUIDE Apps

To store application data, call the setappdata function:

setappdata(obj,name,value);

The first input, obj, is the component object in which to store the data. The second input, name, is a
friendly name that describes the value. The third input, value, is the value you want to store.

To retrieve application data, use the getappdata function:

19-7

19 Programming a GUIDE App

19-8

data = getappdata(obj,name);

The component, obj, must be the component object containing the data. The second input, name,
must match the name you used to store the data. Unlike the UserData property, which only holds
only one variable, you can use setappdata to store multiple variables.

To set up a GUIDE app for sharing application data, perform these steps:

In the Command Window, type guide to open a new blank GUI.
2 Display the names of the Ul components in the component palette:

a Select File > Preferences > GUIDE.

b Select Show names in component palette.
¢ Click OK.

3 Select the push button tool from the component palette at the left side of the Layout Editor and
drag it into the layout area.

4 Select the slider tool from the component palette at the left side of the Layout Editor and drag it
into the layout area.

Select File > Save. Save the Ul as myslider.fig. MATLAB opens the code file in the Editor.

Set the initial value of the application data in the opening function, myslider OpeningFcn.
This function executes just before the Ul is visible to users. In myslider OpeningFcn, insert
these commands immediately after the command, handles.output = hObject.

setappdata(handles.figurel, 'slidervalue',0);
setappdata(handles.figurel, 'difference',1);

After you add the commands, myslider OpeningFcn looks like this.

function myslider OpeningFcn(hObject,eventdata,handles,varargin)
This function has no output args, see OutputFcn.

hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
varargin command line arguments to junk (see VARARGIN)

o® o of o° o°

% Choose default command line output for junk
handles.output = hObject;
setappdata(handles.figurel, 'slidervalue',0);
setappdata(handles.figurel, 'difference',1);

% Update handles structure
guidata(hObject, handles);

UIWAIT makes junk wait for user response (see UIRESUME)
uiwait (handles.figurel);

%
%

Notice that handles is an input argument to myslider OpeningFcn. The handles variable is
a structure that contains all the components in the Ul. Each field in this structure corresponds to
a separate component. Each field name matches the Tag property of the corresponding
component. In this case, handles. figurel is the figure object. Thus, setappdata can use this
figure object to store the data.

7 Add code to the slider callback for changing the data. Add these commands to the end of the
function, sliderl Callback.

Write Callbacks in GUIDE

9

maxval = get(hObject, 'Max');

currval = get(hObject, 'Value');

diffMax = maxval - currval;

% Store application data
setappdata(handles.figurel, 'slidervalue’,currval);
setappdata(handles.figurel, 'difference',diffMax);

After you add the commands, sliderl Callback looks like this.

function sliderl Callback(hObject, eventdata, handles)

hObject handle to sliderl (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o® o° of

Hints: get(hObject, 'Value') returns position of slider
get(hObject, 'Min') and get(hObject, 'Max') to determine range of slider
maxval = get(hObject, 'Max');
currval = get(hObject, 'Value');
diffMax = maxval - currval;
% Store application data
setappdata(handles.figurel, 'slidervalue’,currval);
setappdata(handles.figurel, 'difference',diffMax);

o® o°

This callback function has access to the handles structure, so the setappdata commands store
the data in handles.figurel.

Add code to the push button callback for retrieving the data. Add these commands to the end of
the function, pushbuttonl Callback.

% Retrieve application data

currentval = getappdata(handles.figurel, 'slidervalue');
diffval = getappdata(handles.figurel, 'difference');
display([currentval diffval]);

After you add the commands, pushbuttonl Callback looks like this.

% --- Executes on button press in pushbuttonl.

function pushbuttonl Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Retrieve application data

currentval = getappdata(handles.figurel, 'slidervalue');
diffval = getappdata(handles.figurel, 'difference');
display([currentval diffvall);

This callback function has access to the handles structure, so the getappdata commands
retrieve the data from handles.figurel.

Save your code by pressing Save in the Editor Toolstrip.

Use guidata to Store and Share Data in GUIDE Apps

GUIDE uses the guidata function to store a structure called handles, which contains all the Ul
components. MATLAB passes the handles array to every callback function. If you want to use
guidata to share additional data, then add fields to the handles structure in the opening function.
The opening function is a function defined near the top of your code file that has OpeningFcn in the
name.

19-9

19 Programming a GUIDE App

19-10

To modify your data in a callback function, modify the handles structure, and then store it using the
guidata function. This slider callback function shows how to modify and store the handles
structure in a GUIDE callback function.

function sliderl Callback(hObject, eventdata,handles)

hObject handle to sliderl (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° o° o°

Hints: get(hObject, 'Value') returns position of slider
get(hObject, 'Min') and get(hObject, 'Max') to determine range
handles.myvalue = 2;
guidata(hObject,handles);
end

o° o°

GUIDE Example: Share Slider Data Using guidata

Here is a prebuilt GUIDE app that uses the guidata function to share data between a slider and a
text field. When you move the slider, the number displayed in the text field changes to show the new
slider position.

r‘_‘: sliderbox_guidata l = | |_ih |

Enter a value or click the slider

1.51548

GUIDE Example: Share Data Between Two Apps

Here is a prebuilt GUIDE app that uses application data and the guidata function to share data
between two dialog boxes. When you enter text in the second dialog box and click OK, the button
label changes in the first dialog box.

Write Callbacks in GUIDE

(4. changeme_main I. = | |ﬁj

Press the button and change its text

1

N0EE 2 Text .. oz e |
X
Button Text:
Change We
0K || Cancel
L J

In changeme _main.m, the buttonChangeMe Callback function executes this command to display
the second dialog box:

changeme dialog('changeme main', handles.figure)
The handles. figure input argument is the Figure object for the changeme_main dialog box.

The changeme dialog function retrieves the handles structure from the Figure object. Thus, the
entire set of components in the changeme_main dialog box is available to the second dialog box.

GUIDE Example: Share Data Among Three Apps
Here is a prebuilt GUIDE app that uses guidata and UserData to share data among three app

windows. The large window is an icon editor that accepts information from the tool palette and color
palette windows.

19-11

19 Programming a GUIDE App

i il
"& Figure 1: uide_iconEditor o

lcon file name: | Creabe a New CON 6 EALET AN iCoN IMage fle name to sdt

lcon Edit Pane (16 X 16) Preview

" "n"n " "n """ " " " " " " "w"n . ; —T3 =
""" b |] RN 4 guide_tool.... |

o B " i :
==l=lllIII e 2|1

E]

"™ " " e " e
" " o e .)
' w
@ Figure 2: guide_colorPalette E@u

(AL
WAL

. HEN
CHNN

R: 0.85

19-12

G:0.16
B: 0

More Colors ...

In guide inconeditor.m, the function guide iconeditor OpeningFcn contains this command:
colorPalette = guide colorpalette('iconEditor', hObject)
The arguments are:

* ‘'iconEditor' specifies that a callback in the guide_iconEditor window triggered the execution
of the function.
* hObject is the Figure object for the guide_iconEditor window.

* colorPalette is the Figure object for the guide_colorPalette window.

Similarly, guide iconeditor OpeningFcn calls the guide toolpalette function with similar
input and output arguments.

Write Callbacks in GUIDE

Passing the Figure object between these functions allows the guide_iconEditor window to access
the handles structure of the other two windows. Likewise, the other two windows can access the
handles structure for the guide_iconEditor window.

Renaming and Removing GUIDE-Generated Callbacks
Renaming Callbacks

GUIDE creates the name of a callback function by combining the component’s Tag property and the
callback property name. If you change the component’s Tag value, then GUIDE changes the
callback's name the next time you save the Ul

If you decide to change the Tag value after saving the Ul, then GUIDE updates the following items
(assuming that all components have unique Tag values).

* Component's callback function definition

* Component’s callback property value

» References in the code file to the corresponding field in the handles structure

To rename a callback function without changing the component’s Tag property:

Change the name in the callback function definition.

2 Update the component’s callback property by changing the first argument passed to the
anonymous function. For example, the original callback property for a push button might look
like this:

@(hObject,eventdata)myui('pushbuttonl Callback',...
hObject,eventdata,guidata(hObject))
In this example, you must change, 'pushbuttonl Callback' to the new function name.
3 Change all other references to the old function name to the new function name in the code file.

Deleting Callbacks

You can delete a callback function when you want to remove or change the function that executes
when the end user performs a specific action. To delete a callback function:
Search and replace all instances that refer to the callback function in your code.

2 Open the Ul in GUIDE and replace all instances that refer to the callback function in the Property
Inspector.

3 Delete the callback function.
See Also

Related Examples

. “Callbacks for Specific Components” on page 19-14
. “Anonymous Functions”

. “Share Data Among Callbacks” on page 12-2

. “Write Callbacks in App Designer” on page 7-15

19-13

19 Programming a GUIDE App

Callbacks for Specific Components

19-14

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

Coding the behavior of a UI component involves specific tasks that are unique to the type of
component you are working with. This topic contains simple examples of callbacks for each type of
component. For general information about coding callbacks, see “Write Callbacks in GUIDE” on page
19-2 or “Write Callbacks for Apps Created Programmatically” on page 11-2.

How to Use the Example Code

If you are working in GUIDE, then right-click on the component in your layout and select the
appropriate callback property from the View Callbacks menu. Doing so creates an empty callback
function that is automatically associated with the component. The specific function name that GUIDE
creates is based on the component’s Tag property, so your function name might be slightly different
than the function name in the example code. Do not change the function name that GUIDE creates in
your code. To use the example code in your app, copy the code from the example’s function body into
your function’s body.

Push Button

This code is an example of a push button callback function in GUIDE. Associate this function with the
push button Callback property to make it execute when the end user clicks on the push button.

function pushbuttonl Callback(hObject, eventdata, handles)
% hObject handle to pushbuttonl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

s handles structure with handles and user data (see GUIDATA)
display('Goodbye');
close(gcf);

The first line of code, display('Goodbye'), displays 'Goodbye' in the Command Window. The
next line gets the UI window using gcf and then closes it.

Toggle Button

This code is an example of a toggle button callback function in GUIDE. Associate this function with
the toggle button Callback property to make it execute when the end user clicks on the toggle
button.

function togglebuttonl Callback(hObject,eventdata,handles)

% hObject handle to togglebuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject, 'Value') returns toggle state of togglebuttonl

Callbacks for Specific Components

button state = get(hObject, 'Value');

if button state == get(hObject, 'Max')
display('down');

elseif button state == get(hObject, 'Min")
display('up');

end

The toggle button’s Value property matches the Min property when the toggle button is up. The
Value changes to the Max value when the toggle button is depressed. This callback function gets the
toggle button’s Value property and then compares it with the Max and Min properties. If the button
is depressed, then the function displays 'down' in the Command Window. If the button is up, then
the function displays 'up'.

Radio Button

This code is an example of a radio button callback function in GUIDE. Associate this function with the
radio button Callback property to make it execute when the end user clicks on the radio button.

function radiobuttonl Callback(hObject, eventdata, handles)

% hObject handle to radiobuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject, 'Value') returns toggle state of radiobuttonl

if (get(hObject, 'Value') == get(hObject, 'Max'))
display('Selected');

else
display('Not selected');

end

The radio button’s Value property matches the Min property when the radio button is not selected.
The Value changes to the Max value when the radio button is selected. This callback function gets
the radio button’s Value property and then compares it with the Max and Min properties. If the
button is selected, then the function displays 'Selected' in the Command Window. If the button is
not selected, then the function displays 'Not selected'.

Note Use a button group to manage exclusive selection behavior for radio buttons. See “Button
Group” on page 19-20 for more information.

Check Box

This code is an example of a check box callback function in GUIDE. Associate this function with the
check box Callback property to make it execute when the end user clicks on the check box.

function checkboxl Callback(hObject, eventdata, handles)

% hObject handle to checkboxl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject, 'Value') returns toggle state of checkboxl
if (get(hObject, 'Value') == get(hObject, 'Max'))
display('Selected');

19-15

19 Programming a GUIDE App

19-16

else
display('Not selected');
end

The check box’s Value property matches the Min property when the check box is not selected. The
Value changes to the Max value when the check box is selected. This callback function gets the
check box’s Value property and then compares it with the Max and Min properties. If the check box
is selected, the function displays 'Selected' in the Command Window. If the check box is not
selected, it displays 'Not selected’.

Edit Text Field

This code is an example of a callback for an edit text field in GUIDE. Associate this function with the
uicontrol’s Callback property to make it execute when the end user types inside the text field.

function editl Callback(hObject, eventdata, handles)

hObject handle to editl (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° o o°

Hints: get(hObject, 'String') returns contents of editl as text
str2double(get(hObject, 'String')) returns contents as double

input = get(hObject, 'String');

display(input);

o o°

When the user types characters inside the text field and presses the Enter key, the callback function
retrieves those characters and displays them in the Command Window.

To enable users to enter multiple lines of text, set the Max and Min properties to numeric values that
satisfy Max - Min > 1. For example, set Max to 2, and Min to O to satisfy the inequality. In this case,
the callback function triggers when the end user clicks on an area in the Ul that is outside of the text
field.

Retrieve Numeric Values

If you want to interpret the contents of an edit text field as numeric values, then convert the
characters to numbers using the str2double function. The str2double function returns NaN for
nonnumeric input.

This code is an example of an edit text field callback function that interprets the user’s input as
numeric values.

function editl Callback(hObject, eventdata, handles)

hObject handle to editl (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° o o°

Hints: get(hObject, 'String') returns contents of editl as text
str2double(get(hObject, 'String')) returns contents as a double
input = str2double(get(hObject, 'String'));
if isnan(input)
errordlg('You must enter a numeric value', 'Invalid Input', 'modal')
uicontrol(hObject)
return
else

o o°

Callbacks for Specific Components

display(input);
end

When the end user enters values into the edit text field and presses the Enter key, the callback
function gets the value of the String property and converts it to a numeric value. Then, it checks to
see if the value is NaN (nonnumeric). If the input is NaN, then the callback presents an error dialog
box.

Slider

This code is an example of a slider callback function in GUIDE. Associate this function with the slider
Callback property to make it execute when the end user moves the slider.

function sliderl Callback(hObject, eventdata, handles)

hObject handle to sliderl (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° o° o°

Hints: get(hObject, 'Value') returns position of slider
get(hObject, 'Min') and get(hObject, 'Max') to determine...

slider value = get(hObject, 'Value');

display(slider_value);

o® o°

When the end user moves the slider, the callback function gets the current value of the slider and
displays it in the Command Window. By default, the slider’s range is [0, 1]. To modify the range, set
the slider’s Max and Min properties to the maximum and minimum values, respectively.

List Box
Populate Items in the List Box

If you are developing an app using GUIDE, use the list box CreateFcn callback to add items to the
list box.

This code is an example of a list box CreateFcn callback that populates the list box with the items,
Red, Green, and Blue.

function listbox1l CreateFcn(hObject, eventdata, handles)

% hObject handle to listboxl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

% Hint: listbox controls usually have a white background on Windows.
if ispc && isequal(get(hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set(hObject, 'BackgroundColor', 'white');
end
set(hObject, 'String',{'Red"'; 'Green'; 'Blue'});

The last line, set(hObject, 'String',{'Red'; 'Green'; 'Blue'}), populates the contents of the
list box.

Change the Selected Item

When the end user selects a list box item, the list box’s Value property changes to a number that
corresponds to the item’s position in the list. For example, a value of 1 corresponds to the first item in

19-17

19 Programming a GUIDE App

19-18

the list. If you want to change the selection in your code, then change the Value property to another
number between 1 and the number of items in the list.

For example, you can use the handles structure in GUIDE to access the list box and change the
Value property:

set(handles.listboxl, 'Value',?2)

The first argument, handles. listbox1, might be different in your code, depending on the value of
the list box Tag property.

Write the Callback Function

This code is an example of a list box callback function in GUIDE. Associate this function with the list
box Callback property to make it execute when a selects an item in the list box.

function listbox1l Callback(hObject, eventdata, handles)

hObject handle to listboxl (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
Hints: contents = cellstr(get(hObject,'String')) returns contents
contents{get(hObject, 'Value')} returns selected item from listbox1l
items = get(hObject, 'String"');

index selected = get(hObject, 'Value');

item selected = items{index selected};

display(item_selected);

o° o° o° o o°

When the end user selects an item in the list box, the callback function performs the following tasks:

* Gets all the items in the list box and stores them in the variable, items.

* Gets the numeric index of the selected item and stores it in the variable, index selected.
* Gets the value of the selected item and stores it in the variable, item selected.

» Displays the selected item in the MATLAB Command Window.

The example, “Interactive List Box App in GUIDE” on page 20-6 shows how to populate a list box
with directory names.

Pop-Up Menu
Populate Items in the Pop-Up Menu

If you are developing an app using GUIDE, use the pop-up menu CreateFcn callback to add items to
the pop-up menu.

This code is an example of a pop-up menu CreateFcn callback that populates the menu with the
items, Red, Green, and Blue.

function popupmenul CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenul (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

% Hint: popupmenu controls usually have a white background on Windows.
if ispc && isequal(get(hObject, 'BackgroundColor'),...
get (0, 'defaultUicontrolBackgroundColor'))

Callbacks for Specific Components

set(hObject, 'BackgroundColor', 'white');
end
set(hObject, 'String',{'Red"'; 'Green'; 'Blue'});

The last line, set(hObject, 'String',{'Red'; 'Green'; 'Blue'}), populates the contents of the
pop-up menu.

Change the Selected Item

When the end user selects an item, the pop-up menu’s Value property changes to a number that
corresponds to the item’s position in the menu. For example, a value of 1 corresponds to the first item
in the list. If you want to change the selection in your code, then change the Value property to
another number between 1 and the number of items in the menu.

For example, you can use the handles structure in GUIDE to access the pop-up menu and change
the Value property:

set(handles.popupmenul, 'Value',2)

The first argument, handles . popupmenul, might be different in your code, depending on the value
of the pop-up menu Tag property.

Write the Callback Function

This code is an example of a pop-up menu callback function in GUIDE. Associate this function with
the pop-up menu Callback property to make it execute when the end user selects an item from the
menu.

function popupmenul Callback(hObject, eventdata, handles)

hObject handle to popupmenul (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o® o° of

Hints: contents = cellstr(get(hObject,'String')) returns contents...
contents{get(hObject, 'Value')} returns selected item...

items = get(hObject, 'String');

index_selected = get(hObject, 'Value');

item selected = items{index selected};

display(item_selected);

o® o°

When the user selects an item in the pop-up menu, the callback function performs the following tasks:

* Gets all the items in the pop-up menu and stores them in the variable, items.

* Gets the numeric index of the selected item and stores it in the variable, index selected.
* Gets the value of the selected item and stores it in the variable, item selected.

» Displays the selected item in the MATLAB Command Window.

Panel
Make the Panel Respond to Button Clicks
You can create a callback function that executes when the end user right-clicks or left-clicks on the

panel. If you are working in GUIDE, then right-click the panel in the layout and select View
Callbacks > ButtonDownFcn to create the callback function.

19-19

19 Programming a GUIDE App

This code is an example of a ButtonDownFcn callback in GUIDE.

function uipanell ButtonDownFcn(hObject, eventdata, handles)

% hObject handle to uipanell (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Mouse button was pressed');

When the end user clicks on the panel, this function displays the text, 'Mouse button was
pressed', in the Command Window.

Resize the Window and Panel

By default, GUIDE Uls cannot be resized, but you can override this behavior by selecting Tools >
GUI Options and setting Resize behavior to Proportional.

When the UI window is resizable, the position of components in the window adjust as the user resizes
it. If you have a panel in your UI, then the panel’s size will change with the window’s size. Use the
panel’s SizeChangedFcn callback to make your app perform specific tasks when the panel resizes.

This code is an example of a panel’s SizeChangedFcn callback in a GUIDE app. When the user
resizes the window, this function modifies the font size of static text inside the panel.

function uipanell SizeChangedFcn(hObject, eventdata, handles)

% hObject handle to uipanell (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(hObject, 'Units', 'Points")

panelSizePts = get(hObject, 'Position');

panelHeight = panelSizePts(4);
set(hObject, 'Units', 'normalized');

newFontSize = 10 * panelHeight / 115;

texth = findobj('Tag', 'textl');

set(texth, 'FontSize',newFontSize);

If your UI contains nested panels, then they will resize from the inside-out (in child-to-parent order).

Note To make the text inside a panel resize automatically, set the fontUnits property to
‘normalized’.

Button Group

Button groups are similar to panels, but they also manage exclusive selection of radio buttons and
toggle buttons. When a button group contains multiple radio buttons or toggle buttons, the button
group allows the end user to select only one of them.

Do not code callbacks for the individual buttons that are inside a button group. Instead, use the
button group’s SelectionChangedFcn callback to respond when the end user selects a button.

This code is an example of a button group SelectionChangedFcn callback that manages two radio
buttons and two toggle buttons.

function uibuttongroupl SelectionChangedFcn(hObject, eventdata, handles)

% hObject handle to the selected object in uibuttongroupl
% eventdata structure with the following fields

19-20

Callbacks for Specific Components

EventName: string 'SelectionChanged' (read only)
OldValue: handle of the previously selected object or empty
NewValue: handle of the currently selected object
handles structure with handles and user data (see GUIDATA)
switch get(eventdata.NewValue, 'Tag') % Get Tag of selected object.
case 'radiobuttonl’
display('Radio button 1');
case 'radiobutton2’
display('Radio button 2');
case 'togglebuttonl'
display('Toggle button 1");
case 'togglebutton2'
display('Toggle button 2');

d° o° o° o°

end

When the end user selects a radio button or toggle button in the button group, this function
determines which button the user selected based on the button’s Tag property. Then, it executes the
code inside the appropriate case.

Note The button group’s SelectedObject property contains a handle to the button that user
selected. You can use this property elsewhere in your code to determine which button the user
selected.

Menu Item

The code in this section contains example callback functions that respond when the end user selects
Edit > Copy > To File in this menu.

19-21

19 Programming a GUIDE App

-
u copy_to_file_menu2 e e

File | Edit | &

Cut
Copy | To File

Paste

function edit menu Callback(hObject, eventdata, handles)

% hObject handle to edit menu (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
display('Edit menu selected');

%
%

function copy menu item Callback(hObject, eventdata, handles)

% hObject handle to copy menu_item (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
display('Copy menu item selected');

%
%

function tofile menu item Callback(hObject, eventdata, handles)

% hObject handle to tofile menu_item (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename,path] = uiputfile('myfile.m', 'Save file name');

The function names might be different in your code, depending on the tag names you specify in the
GUIDE Menu Editor.

19-22

Callbacks for Specific Components

The callback functions trigger in response to these actions:

* When the end user selects the Edit menu, the edit menu Callback function displays the text,
'Edit menu selected', in the MATLAB Command Window.

* When the end user hovers the mouse over the Copy menu item, the
copy_menu_item Callback function displays the text, 'Copy menu item selected', in the
MATLAB Command Window.

* When the end user clicks and releases the mouse button on the To File menu item, the
tofile menu_item Callback function displays a dialog box that prompts the end user to select
a destination folder and file name.

The tofile menu_item Callback function calls the uiputfile function to prompt the end user
to supply a destination file and folder. If you want to create a menu item that prompts the user for an
existing file, for example, if your UI has an Open File menu item, then use the uigetfile function.

When you create a cascading menu like this one, the intermediate menu items trigger when the
mouse hovers over them. The final, terminating, menu item triggers when the mouse button releases
over the menu item.

How to Update a Menu Item Check

You can add a check mark next to a menu item to indicate that an option is enabled. In GUIDE, you
can select Check mark this item in the Menu Editor to make the menu item checked by default.
Each time the end user selects the menu item, the callback function can turn the check on or off.

This code shows how to change the check mark next to a menu item.

if strcmp(get(hObject, 'Checked'), 'on')
set(hObject, 'Checked', 'off");

else
set(hObject, 'Checked', 'on');

end

The strcmp function compares two character vectors and returns true when they match. In this
case, it returns true when the menu item’s Checked property matches the character vector, 'on"'.

See “Create Menus for GUIDE Apps” on page 18-40 for more information about creating menu items
in GUIDE.

Table

This code is an example of the table callback function, CellSelectionCallback. Associate this
function with the table CellSelectionCallback property to make it execute when the end user
selects cells in the table.

function uitablel CellSelectionCallback(hObject, eventdata, handles)
hObject handle to uitablel (see GCBO)
eventdata structure with the following fields
Indices: row and column indices of the cell(s) currently selected
handles structure with handles and user data (see GUIDATA)
data = get(hObject, 'Data');
indices = eventdata.Indices;
r = indices(:,1);
c = indices(:,2);

0° o° o° o°

19-23

19 Programming a GUIDE App

19-24

linear index = sub2ind(size(data),r,c);
selected vals data(linear_index);
selection sum = sum(sum(selected vals))

When the end user selects cells in the table, this function performs the following tasks:

* Gets all the values in the table and stores them in the variable, data.
* Gets the indices of the selected cells. These indices correspond to the rows and columns in data.

* Converts the row and column indices into linear indices. The linear indices allow you to select
multiple elements in an array using one command.

* Gets the values that the end user selected and stores them in the variable, selected vals.
* Sums all the selected values and displays the result in the Command Window.

This code is an example of the table callback function, Cell1EditCallback. Associate this function
with the table CellEditCallback property to make it execute when the end user edits a cell in the
table.

function uitablel CellEditCallback(hObject, eventdata, handles)
hObject handle to uitablel (see GCBO)
eventdata structure with the following fields
Indices: row and column indices of the cell(s) edited
PreviousData: previous data for the cell(s) edited
EditData: string(s) entered by the user
NewData: EditData or its converted form set on the Data property.
Empty if Data was not changed
Error: error string when failed to convert EditData
data = get(hObject, 'Data');
data sum = sum(sum(data))

d° 0° 0° 0° 0P o° o° o°

When the end user finishes editing a table cell, this function gets all the values in the table and
calculates the sum of all the table values. The ColumnEditable property must be set to true in at
least one column to allow the end user to edit cells in the table.

Axes

The code in this section is an example of an axes ButtonDownFcn that triggers when the end user
clicks on the axes.

Callbacks for Specific Components

ru axes_gui I. = | Li:?-ﬁ

L -

function axesl ButtonDownFcn(hObject, eventdata, handles)

% hObject handle to axesl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

pt = get(hObject, 'CurrentPoint"')

The coordinates of the pointer display in the MATLAB Command Window when the end user clicks on
the axes (but not when that user clicks on another graphics object parented to the axes).

Note Most MATLAB plotting functions clear the axes and reset a number of axes properties,
including the ButtonDownFcn, before plotting data. To create an interface that lets the end user plot
data interactively, consider providing a component such as a push button to control plotting. Such
components’ properties are unaffected by the plotting functions. If you must use the axes
ButtonDownFcn to plot data, then use functions such as line, patch, and surface.

See Also

Related Examples
. “Write Callbacks in GUIDE” on page 19-2
. “Write Callbacks for Apps Created Programmatically” on page 11-2

19-25

19 Programming a GUIDE App

. “Write Callbacks in App Designer” on page 7-15

19-26

Examples of GUIDE Apps

Examples of GUIDE Apps

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

The following are examples that are packaged with MATLAB. The introductory text for most examples
provides instructions on copying them to a writable folder on your system, so you can follow along.

* “GUIDE App With Parameters for Displaying Plots” on page 20-2
* “Interactive List Box App in GUIDE” on page 20-6
* “Automatically Refresh Plot in a GUIDE App” on page 20-9

19-27

Examples of GUIDE Uls

* “GUIDE App With Parameters for Displaying Plots” on page 20-2
* “Interactive List Box App in GUIDE” on page 20-6
* “Automatically Refresh Plot in a GUIDE App” on page 20-9

20 Examples of GUIDE Uls

GUIDE App With Parameters for Displaying Plots

20-2

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

This example shows how to examine and run a prebuilt GUIDE app. The app contains three edit fields
and two axes. The axes display the frequency and time domain representations of a function that is
the sum of two sine waves. The top two edit fields contain the frequency for each component sine
wave. The third edit field contains the time range and sampling rate for the plots.

Open and Run the Example

Open and run the app. Change the default values in the f1 and f2 fields to change the frequency for
each component sine wave. You can also change the three numbers (separated by colons) in the t
field. The first and last numbers specify the window of time to sample the function. The middle
number specifies the sampling rate.

Press the Plot button to see the graph of the function in the frequency and time domains.

GUIDE App With Parameters for Displaying Plots

4 Signal Analysis — O *
sin(2*pi*f1*t)+sin(2*pi*f2*t)
0 ' ' ' ' 1
5ol ’] 50
101 h 1 o
0 .l'l ||-| i J LN i i i 120
O 100 200 300 400 00
Frequency t
(startinc:end)
0:.001:0.25
2“ f ﬁl ﬁ ' ' ' ﬂ ' .
il |* " |
'|flﬂ'| | 'dl J rl" || "' | ”L
.;}-n|| f |Iy| ||| I“rl UI| |
|u |J || II Plot
ol || |,| |
I| | . VoV
|J |
-2 I I L i I
0 0.05 0.1 0.15 02 0.25
Time

Examine the Code

1 n GUIDE, click the Editor button 1= to view the code.

Near the top of the Editor window, use the EN] Go To - button to navigate to the functions
discussed below.

f1_input_Callback and f2_input_Callback

The f1_input_ Callback function executes when the user changes the value in the f1 edit field. The
f2_input Callback function responds to changes in the f2 field, and it is almost identical to the

f1 input_ Callback function. Both functions check for valid user input. If the value in the edit field
is invalid, the Plot button is disabled. Here is the code for the f1 input Callback function.

fl = str2double(get(hObject, 'String'));

if isnan(fl) || ~isreal(fl)
% Disable the Plot button and change its string to say why
set(handles.plot button, 'String', 'Cannot plot f1');
set(handles.plot button, 'Enable’, 'off");
% Give the edit text box focus so user can correct the error
uicontrol(hObject);

else
% Enable the Plot button with its original name
set(handles.plot button, 'String', 'Plot');

20-3

20 Examples of GUIDE Uls

set(handles.plot button, 'Enable', 'on');
end

t_input_Callback

The t_input_Callback function executes when the user changes the value in the t edit field. This
try block checks the value to make sure that it is numeric, that its length is between 2 and 1000, and
that the vector is monotonically increasing.

try
t = eval(get(handles.t input, 'String'));
if ~isnumeric(t)
% t is not a number
set(handles.plot button, 'String','t is not numeric')
elseif length(t) < 2
% t is not a vector
set(handles.plot button, 'String','t must be vector')
elseif length(t) > 1000
% t is too long a vector to plot clearly
set(handles.plot button, 'String','t is too long')
elseif min(diff(t)) < O
% t 1s not monotonically increasing
set(handles.plot button, 'String', 't must increase')
else
% Enable the Plot button with its original name
set(handles.plot button, 'String', 'Plot"')
set(handles.plot button, 'Enable','on')
return
end
catch EM
% Cannot evaluate expression user typed
set(handles.plot button, 'String', 'Cannot plot t');
uicontrol(hObject);
end

The catch block changes the label on the Plot button to indicate that an input value was invalid. The
uicontrol command sets the focus to the field that contains the erroneous value.

plot_button_Callback

The plot_button Callback function executes when the user clicks the Plot button.
First, the callback gets the values in the three edit fields:
str2double(get(handles.fl input, 'String'));

str2double(get(handles.f2 input, 'String'));
= eval(get(handles.t input, 'String'));

fl =
f2 =
t
Then callback uses values of f1, f2, and t to sample the function in the time domain and calculate
the Fourier transform. Then, the two plots are updated:

% Create frequency plot in proper axes

plot(handles.frequency axes,f,m(1:257));

set(handles. frequency axes, 'XMinorTick', 'on');

grid(handles.frequency axes,'on');

% Create time plot in proper axes

20-4

GUIDE App With Parameters for Displaying Plots

plot(handles.time axes,t,x);
set(handles.time axes, 'XMinorTick','on');
grid on

See Also

Related Examples

. “Create a Simple App Using GUIDE” on page 3-2
. “Write Callbacks in GUIDE” on page 19-2
. “Share Data Among Callbacks” on page 12-2

20-5

20 Examples of GUIDE Uls

Interactive List Box App in GUIDE

20-6

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

This example shows how to examine and run a prebuilt GUIDE app. The app contains a list box that
displays the files in a particular folder. When you double-click an item in the list, MATLAB opens the
item.

Open and Run The Example

Open the app in GUIDE, and click the Run Figure (green play button) to run it.

= Ibox2.fig o B

File Edit Wiew Layout Tools Help

NEBE| 4R 0| 2B Sk b

Double Click to Open

[- |

[k Select

’ Push Button

| Slider

’ ® Radio Button
’ b4 Check Box
[o Edit Text

THT| Static Text

=3 Pop-up Menu
=0 Listbox

l

l

l

| I Toggle Button
| ElTable
l

l

l

l

isﬁ FAxes

[E Panel

|E Button Group

=X ActiveX Control

(IS | S | S | S | S S S) SN S | S | SN S) " S

Tag: figurel Current Point: [189, 1] Position: [360, 704, 230, 230]

Interactive List Box App in GUIDE

Alternatively, you can call the 1box2 function in the Command Window with the 'dir' name-value
pair argument. The name-value pair argument allows you to list the contents of any folder. For
example, this command lists the files in the C:\ folder on a Windows® system:

lbox2('dir','C:\")

|| Directory List l = -

Chmyfies
"
Ipox2. fig [!
oz .m
test.m
L A

Note: Before you can call 1box2 in the Command Window, you must save the GUIDE files in a folder
on your MATLAB® path. To save the files, select File > Save As in GUIDE.

Examine the Layout and Callback Code

1 In GUIDE, click the Editor button T to view the code.
2

Near the top of the Editor window, use the EH] Go To » button to navigate to the functions
discussed below.

Ibox2_OpeningFcn

The callback function 1box2 OpeningFcn executes just before the list box appears in the Ul for the
first time. The following statements determine whether the user specified a path argument to the
1box2 function.

if nargin == 3,
initial dir = pwd;
elseif nargin > 4
if strcmpi(varargin{l}, 'dir")
if exist(varargin{2}, 'dir")
initial dir = varargin{2};

else
errordlg('Input must be a valid directory', 'Input Argument Error!')
return
end
else
errordlg('Unrecognized input argument', 'Input Argument Error!');
return;

20-7

20 Examples of GUIDE Uls

20-8

end
end

If nargin==3, then the only input arguments to lbox2 OpeningFcn are hObject, eventdata, and
handles. Therefore, the user did not specify a path when they called 1box2, so the list box shows
the contents of the current folder. If nargin>4, then the varargin input argument contains two
additional items (suggesting that the user did specify a path). Thus, subsequent if statements check
to see whether the path is valid.

listbox1_callback

The callback function 1istbox1l callback executes when the user clicks a list box item. This
statement, near the beginning of the function, returns t rue whenever the user double-clicks an item
in the list box:

if strcmp(get(handles.figurel, 'SelectionType'), 'open')

If that condition is true, then listbox1 callback determines which list box item the user
selected:

index selected = get(handles.listbox1l, 'Value');
file list = get(handles.listboxl, 'String');
filename = file list{index selected};

The rest of the code in this callback function determines how to open the selected item based on
whether the item is a folder, FIG file, or another type of file:

if handles.is dir(handles.sorted index(index_ selected))
cd (filename)
load listbox(pwd,handles)

else
[path,name,ext] = fileparts(filename);
switch ext
case '.fig'
guide (filename)
otherwise
try
open(filename)
catch ex
errordlg(...
ex.getReport('basic'), 'File Type Error', 'modal")
end
end
end
See Also

Related Examples

. “Create a Simple App Using GUIDE” on page 3-2
. “Write Callbacks in GUIDE” on page 19-2

. “Share Data Among Callbacks” on page 12-2

Automatically Refresh Plot in a GUIDE App

Automatically Refresh Plot in a GUIDE App

Note The GUIDE environment will be removed in a future release. After GUIDE is removed, existing
GUIDE apps will continue to run in MATLAB but they will not be editable in GUIDE.

To continue editing an existing GUIDE app, see “GUIDE Migration Strategies” on page 4-5 for
information on how to help maintain compatibility of the app with future MATLAB releases. To create
new apps interactively, “Develop Apps Using App Designer” instead.

This example shows how to examine and run a prebuilt GUIDE app. The app displays a surface plot,
adds random noise to the surface, and refreshes the plot at regular intervals. The app contains two
buttons: one that starts adding random noise to the plot, and another that stops adding noise. The
slider below the plot allows the user to set the refresh period between 0.01 and 2 seconds.

Open and Run the Example
Open and run the app. Move the slider to set the refresh interval between 0.01 and 2.0 seconds. Then

click the Start Randomizing button to start adding random noise to the plotted function. Click the
Stop Randomizing button to stop adding noise and refreshing the plot.

20-9

20 Examples of GUIDE Uls

20-10

-' ex_guide_timergui El (=] @ﬁ

Timer GUI Demao

| Start Randomizing | | Stop Randomizing |

0.01 Timer Period (s.}: 0.1 2.0

Examine the Code
1 n GUIDE, click the Editor button &=l to view the code.

Near the top of the Editor window, use the E::'” Go To - button to navigate to the functions
discussed below.

ex_guide_timergui_OpeningFcn

The ex guide timergui OpeningFcn function executes when the app opens and starts running.
This command creates the timer object and stores it in the handles structure.

handles.timer = timer(...
'ExecutionMode', 'fixedRate', % Run timer repeatedly.
'Period', 1, ... % Initial period is 1 sec.
'TimerFcn', {@update display,hObject}); % Specify callback function.

The callback function for the timer is update display, which is defined as a local function.

Automatically Refresh Plot in a GUIDE App

update_display

The update display function executes when the specified timer period elapses. The function gets
the values in the ZData property of the Surface object and adds random noise to it. Then it updates
the plot.

handles = guidata(hfigure);
Z = get(handles.surf, 'ZData');
Z =17+ 0.1*randn(size(Z));
set(handles.surf, 'ZData',Z);

periodsidr_Callback

The periodsldr Callback function executes when the user moves the slider. It calculates the
timer period by getting the slider value and truncating it. Then it updates the label below the slider
and updates the period of the timer ohject.

% Read the slider value
period = get(handles.periodsldr, 'Value');
% Truncate the value returned by the slider.
period = period - mod(period, .01);
% Set slider readout to show its value.
set(handles.slidervalue, 'String',num2str(period))
% If timer is on, stop it, reset the period, and start it again.
if strcmp(get(handles.timer, 'Running'), ‘'on')
stop(handles.timer);
set(handles.timer, 'Period',period)
start(handles.timer)
else % If timer is stopped, reset its period.
set(handles.timer, 'Period',period)
end

startbtn_Callback

The startbtn Callback function calls the start method of the timer object if the timer is not
already running.

if strcmp(get(handles.timer, 'Running'), 'off"')
start(handles.timer);
end

stopbtn_Callback

The stopbtn Callback function calls the stop method of the timer object if the timer is currently
running.

if strcmp(get(handles.timer, 'Running'), 'on'")
stop(handles.timer);

end
figurel_CloseRequestFcn

The figurel CloseRequestFcn callback executes when the user closes the app. The function
stops the timer object if it is running, deletes the timer object, and then deletes the figure window.

if strcmp(get(handles.timer, 'Running'), ‘'on')
stop(handles.timer);

end

20-11

20 Examples of GUIDE Uls

20-12

% Destroy timer
delete(handles.timer)
% Destroy figure
delete(hObject);

See Also

Related Examples
. “Timer Callback Functions”
. “Write Callbacks in GUIDE” on page 19-2

App Packaging

13

Packaging GUIs as Apps

* “Get and Create Apps” on page 21-2

» “Package Apps From the MATLAB Toolstrip” on page 21-5
* “Package Apps in App Designer” on page 21-7

* “Modify Apps” on page 21-9

* “Ways to Share Apps” on page 21-10

* “MATLAB App Installer File — mlappinstall” on page 21-14
* “App Packaging Dependency Analysis” on page 21-15

21 Packaging GUIs as Apps

Get and Create Apps

What Is an App?

A MATLAB app is a self-contained MATLAB program with a user interface that automates a task or
calculation. All the operations required to complete the task — getting data into the app, performing
calculations on the data, and getting results are performed within the app. Apps are included in many
MATLAB products. In addition, you can design your own apps using the App Designer development
environment. The Apps tab on the MATLAB Toolstrip displays all currently installed apps when you
click the down arrow on the far right of the toolstrip.

4\ MATLAB R2020a — O *

APPS

Ee i S . 8 Search Documentation =} & Signin
U5 g

Al

S 8068060 v v B8 8 & @

App

Apps App App Identification Analyzer
FILE APPS

Design Get More Install Package Curve Fitting Optimization PID Tuner System Signal Wireless M
Waveform G... \

21-2

L

Note You cannot run MATLAB apps using the MATLAB Runtime. Apps are for MATLAB to MATLAB
deployment. To run code using the MATLAB Runtime, the code must be packaged using MATLAB
Compiler.

Where to Get Apps

There are three key ways to get apps:
* MATLAB Products

Many MATLAB products, such as Curve Fitting Toolbox™, Signal Processing Toolbox™, and
Control System Toolbox™ include apps. In the apps gallery, you can see the apps that come with
your installed products.

* Create Your Own
App Designer is the recommended environment for building apps in MATLAB. You can create your
own MATLAB app and package it into a single file that you can distribute to others. The apps

packaging tool automatically finds and includes all the files needed for your app. It also identifies
any MATLAB products required to run your app.

You can share your app directly with other users, or share it with the MATLAB user community by
uploading it to the MATLAB File Exchange. When others install your app, they do not need to be
concerned with the MATLAB search path or other installation details.

Watch this video for an introduction to creating apps:

Packaging and Installing MATLAB Apps (2 min, 58 sec)
* Add-Ons

Apps (and other files) uploaded to the MATLAB File Exchange are available from within MATLAB:

https://www.mathworks.com/videos/packaging-and-installing-matlab-apps-101563.html

Get and Create Apps

1 On the Home tab, in the Environment section, click the Add-Ons arrow button.
2 C(Click Get Add-Ons.
3 Search for apps by name or descriptive text.

Why Create an App?

When you create an app package, MATLAB creates a single app installation file (.mlappinstall)
that enables you and others to install your app easily.

In particular, when you package an app, the app packaging tool:

* Performs a dependency analysis that helps you find and add the files your app requires.
* Reminds you to add shared resources and helper files.

* Stores information you provide about your app with the app package. This information includes a
description, a list of additional MATLAB products required by your app, and a list of supported
platforms.

* Automates app updates (versioning).

In addition when others install your app:

» Itis a one-click installation.
* Users do not need to manage the MATLAB search path or other installation details.
* Your app appears alongside MATLAB toolbox apps in the apps gallery.

Best Practices and Requirements for Creating an App

Best practices:

* Write the app as an interactive application with a user interface written in the MATLAB language.
* All interaction with the app is through the user interface.

* Make the app reusable. Do not make it necessary for a user restart the app to use different data or
inputs with it.

* Ensure the main function returns the handle of the main figure. (The main function created by
GUIDE returns the figure handle by default.)

Although not a requirement, doing so enables MATLAB to remove the app files from the search
path when users exit the app.

» If you want to share your app on MATLAB File Exchange, you must release it under a BSD license.
In addition, there are restrictions on the use of binary files such as MEX-files, p-coded files, or
DLLs.

Requirements:

* The main file must be a function (not a script).

* Because you invoke apps by clicking an icon in the apps gallery, the main function cannot have any
required input arguments. However, you can define optional input arguments. One way to define
optional input arguments is by using varargin.

21-3

21 Packaging GUIs as Apps

See Also

Related Examples

. “Package Apps From the MATLAB Toolstrip” on page 21-5
. “Modify Apps” on page 21-9
. “Ways to Share Apps” on page 21-10

21-4

Package Apps From the MATLAB Toolstrip

Package Apps From the MATLAB Toolstrip

You can package any MATLAB app you create into a single file that can be easily shared with others.
When you package an app, MATLAB creates a single app installation file (.mlappinstall). The
installation file enables you and others to install your app and access it from the apps gallery without
concern for installation details or the MATLAB path.

Note As you enter information in the Package Apps dialog box, MATLAB creates and saves a .prj
file continuously. A . prj file contains information about your app, such as included files and a
description. Therefore, if you exit the dialog box before clicking the Package button, the .prj file
remains, even though a .mlappinstall file is not created. The . prj file enables you to quit and
resume the app creation process where you left off.

To create an app installation file:

On the desktop Toolstrip, on the Home tab, click the Add-Ons down-arrow.
Click Package App.

In the Package App dialog box, click Add main file and specify the file that you use to run the
app you created.

The main file must be callable with no input and must be a function or method, not a script.
MATLAB analyzes the main file to determine if there are other files used in the app. For more
information, see “App Packaging Dependency Analysis” on page 21-15.

Tip The main file must return the figure handle of your app for MATLAB to remove your app files
from the search path when users exit the app. For more information, see “What Is the MATLAB
Search Path?”

(Functions created by GUIDE return the figure handle.)

4 If your app requires additional files that are not listed under Files included through analysis,
add them by clicking Add files/folders.

You can include external interfaces, such as MEX-files or Java® in the .mlappinstall file,
although doing so can restrict the systems on which your app can run.

5 Describe your app.
a Inthe App Name field, type an app name.

If you install the app, MATLAB uses the name for the .mlappinstall file and to label your
app in the apps gallery.

b Optionally, specify an app icon.
Click the icon to the left of the App Name field to select an icon for your app or to specify a

custom icon. MATLAB automatically scales the icon for use in the Install dialog box, App
gallery, and quick access toolbar.

Optionally, select a previously saved screenshot to represent your app.
Optionally, specify author information.
e In the Description field, describe your app so others can decide if they want to install it.

21-5

21 Packaging GUIs as Apps

21-6

f Identify the products on which your app depends.

Click the plus button on the right side of the Products field, select the products on which
your app depends, and then click Apply Changes. Keep in mind that your users must have
all of the dependent products installed on their systems.

After you create the package, when you select a .mlappinstall file in the Current Folder
browser, MATLAB displays the information you provided (except your email address and
company name) in the Current Folder browser Details panel. If you share your app in the
MATLAB Central File Exchange, the same information also displays there. The screenshot you
select, if any, represents your app in File Exchange.

Click Package.

As part of the app packaging process, MATLAB creates a .prj file that contains information
about your app, such as included files and a description. The .prj file enables you to update the
files in your app without requiring you to respecify descriptive information about the app.

In the Build dialog box, note the location of the installation file (.mlappinstall), and then click
Close.

For information on installing the app, see “Install Add-Ons from File”.

See Also

Related Examples

“Modify Apps” on page 21-9

“Ways to Share Apps” on page 21-10

“MATLAB App Installer File — mlappinstall” on page 21-14
“App Packaging Dependency Analysis” on page 21-15

Package Apps in App Designer

Package Apps in App Designer

After creating an app in App Designer, you can package it into a single installer file that you can
easily share with others. The underlying functionality for packaging apps in App Designer is the same
as the functionality that underlies the Add-Ons > Package App option in the MATLAB Toolstrip.

1 In App Designer, select the Designer tab. Then select Share > MATLAB App.

&g L

Share Rum
- -

MATLAE App
Create an app installation file to share yvour app with MATLAB users

Web App
Create a deployed web app using MATLAB Compiler

Standalone Desktop App
Create a standalone deskiop application using MATLAE Comipiler

MATLAB opens the Package App dialog box.
2 The Package App dialog box has the following items pre-populated:

* The application name matches the name assigned to the figure in App Designer.
* The Main file is the MLAPP file you currently have selected for editing.
¢ The Output folder is the folder location where the installation file will be saved.

» The files listed under Files included through analysis include any files MATLAB detected

as dependent files. You can add additional files by clicking Add files/folders under Shared
resources and helper files.

21-7

21 Packaging GUIs as Apps

A\ Package App - a x

DESIGNER H:\My Special App.prj ot
E;_,I:l 1 H Describe your app Package into installation file
o O 20 ~

iy H Main file a I = I 0 Qutput folder
{ pQClE Fp o T L vavaser

| FILE & MySpecialApp.mia = S
MySpecialApp. miapp -yt . Hi\Documents\MATLAB|

e Remove main file Author Name atmi o Browse
COMPOMNENT LIEH P (s

| Search mll Files included through analysis — ¥ Remove screenshot _
Search

| These are the files found through mpan; ™
COMMON = e ite .

| dependency analysis. Set as default contact '

i Package
i hiee Rerun analysis { . : . =
|nu Display grag] VoW W B W a R
| Shared resources and helper files
. BIMEEE
..... B“non 1 % 3 s
I'I”é‘ Execule con 'g' app!tdpg oy
Add files/folders
— Check Box
|\/ Selec! stale
30 Select and d
% format |‘7
| A matae x| +
[Drop Down
ab Sedect singlhd
Edit Field (Numeric) I ¥ CALLBACK EXECUTION CONTROL |
123| Enter numeric data 0.8 I
- ~ IDENTIFIERS
04 5 T
Edit Field (Text) ame My Special App
abe| Enter teod data -
02 HumberTitle
; IntegerHandle
| M Display icon or logo 1] = = = = — = — = = . I ;
0 01 02 03 04 05 06 07 08 09 1 [TERACTIVR,
- | X
| Lo | 1 B! |
| 14 i b [1]

3 Specify details to display in the apps gallery. Enter the appropriate information in these fields:
Author Name, Email, Company, Summary, and Description.

4 In the Products section, select the products that are required to run the app. Keep in mind that
your users must have all of the dependent products installed on their systems.

5 Click Select screenshot to specify an icon to display in the apps gallery.

Click Package to create the .mlappinstall file to share with your users. Later, if you click the
Package App button in the App Designer Toolstrip again, the Package App dialog box opens the
most recently modified . prj file for the MLAPP file.

See Also

Related Examples

. “Package Apps From the MATLAB Toolstrip” on page 21-5
. “Ways to Share Apps” on page 21-10

. “MATLAB App Installer File — mlappinstall” on page 21-14
. “App Packaging Dependency Analysis” on page 21-15

21-8

Modify Apps

Modify Apps

When you update the files included in a .mlappinstall file, you recreate and overwrite the original
app. You cannot maintain two versions of the same app.

To update files in an app you created:

1 In the Current Folder browser, navigate to the folder containing the project file (. prj) that

MATLAB created when you packaged the app.

By default, MATLAB writes the .prj file to the folder that was the current folder when you

packaged the app.

2 From the Current Folder browser, double-click the project file for your app package,

appname .prj

The Package App dialog box opens.

3 Adjust the information in the dialog box to reflect your changes by doing any or all of the
following:

* If you made code changes, add the main file again, and refresh the files included through
analysis.

» Ifyour code calls additional files that are not included through analysis, add them.

+ If you want anyone who installs your app over a previous installation to be informed that the
content is different, change the version.

Version numbers must be a combination of integers and periods, and can include up to three
periods — 2.3.5.2, for example.

Anyone who attempts to install a revision of your app over another version is notified that the
version number is changed. The user can continue or cancel the installation.

» Ifyour changes introduce different product dependencies, adjust the product list in the
Products field. Keep in mind that your users must have all of the dependent products
installed on their systems.

4 Click Package.
See Also

Related Examples

“Ways to Share Apps” on page 21-10
“MATLAB App Installer File — mlappinstall” on page 21-14
“App Packaging Dependency Analysis” on page 21-15

21-9

21 Packaging GUIs as Apps

Ways to Share Apps

There are several ways to share your apps.

* “Share MATLAB Files Directly” on page 21-10 — This approach is the simplest way to share an
app, but your users must have MATLAB installed on their systems, as well as other MathWorks
products that your app depends on. They must also be familiar with executing commands in the
MATLAB Command Window and know how to manage the MATLAB path.

» “Package Your App” on page 21-12 — This approach uses the app packaging tool provided with
MATLAB. When your users install a packaged app, the app appears in the Apps tab in the
MATLAB Toolstrip. This approach is useful for sharing apps with larger audiences, or when your
users are less familiar with executing commands in the MATLAB Command Window or managing
the MATLAB path. As in the case of sharing MATLAB files directly, your users must have MATLAB
installed on their systems (as well as other MathWorks products that your app depends on).

* “Create a Deployed Web App” on page 21-13 — This approach lets you create apps that users
within an organization can run in their web browsers. To deploy a web app, you must have
MATLAB Compiler installed on your system. Your users must have a web browser installed that
can access your intranet, but they do not need to have MATLAB installed.

* “Create a Standalone Desktop Application” on page 21-13 — This approach lets you share
desktop apps with users that do not have MATLAB installed on their systems. To create the
standalone application, you must have MATLAB Compiler installed on your system. To run the
application, your users must have MATLAB Runtime installed on their systems. For more
information, see https://www.mathworks.com/products/compiler/matlab-runtime.html.

Share MATLAB Files Directly

If you created your app in GUIDE, share the . fig file, the . m file, and all other dependent files with
your users.

If you created your app programmatically, share all . m files and other dependent files with your users.

If you created your app in App Designer, share the .mlapp file and all other dependent files with your
users. To provide a richer file browsing experience for your users, provide a name, version, author,

summary, and description by clicking App Details =| in the Designer tab of the App Designer
toolstrip. The App Details dialog box also provides an option for specifying a screen shot. If you do
not specify a screen shot, App Designer captures and updates a screen shot automatically when you
run the app.

MATLAB provides your app details to some operating systems for display in their file browsers.
Specifying apps details also makes it easier to package and compile your apps. The .mlapp file
provides those details automatically to those interfaces.

21-10

https://www.mathworks.com/products/compiler/matlab-runtime.html

Ways to Share Apps

App Details x

Sharing Details

Sharing details display in certain situations, such as when you share your app
or view your app in some system file browsers

Mame

myapp 1.0

Author

Summary

. Ellsp1ay-ci|!nsit5l measurémeants . . .

L

Description

IEIrspﬂa:;r density measuremants from the XP-271 densifornater. Al measurameants
include the base layer

Code Options

To specify input arguments and whether your app can run multiple instances at a time or only a
single instance, expand the Code Options section and select from the available options.

21-11

21 Packaging GUIs as Apps

21-12

App Details

Sharing Details
Code Options

App allows only ane running instance at a time (Single Running Instance)

startupFen{app)

Package Your App

To package your app and make it accessible in the MATLAB Apps tab, create an .mlappinstall file
by following the steps in “Package Apps in App Designer” on page 21-7 or “Package Apps From the
MATLAB Toolstrip” on page 21-5. The resulting .mlappinstall file includes all dependent files.

You can share the .mlappinstall file directly with your users. To install it, they must double-click
the .mlappinstall file in the MATLAB Current Folder browser.

Alternatively, you can share your app as an add-on by uploading the .mlappinstall file to MATLAB
Central File Exchange. Your users can find and install your add-on from the MATLAB Toolstrip by
performing these steps:

1 -
In the MATLAB Toolstrip, on the Home tab, in the Environment section, click the Add-Ons =3
icon.

2 Find the add-on by browsing through available categories on the left side of the Add-On Explorer
window. Use the search bar to search for an add-on using a keyword.

Click the add-on to open its detailed information page.
On the information page, click Add to install the add-on.

https://www.mathworks.com/matlabcentral/fileexchange/

Ways to Share Apps

Note Although .mlappinstall files can contain any files you specify, MATLAB Central File
Exchange places additional limitations on submissions. Your app cannot be submitted to File
Exchange when it contains any of the following files:

+ MEX-files
* Other binary executable files, such as DLLs. (Data and image files are typically acceptable.)

Create a Deployed Web App

Web apps are MATLAB apps that can run in a web browser. You create an app in App Designer,
package it using the Web App Compiler, and then use the MATLAB Web Apps Manager to serve the
app in a web browser. Then you can share the app within your organization by sharing a URL.
Creating deployed web apps requires MATLAB Compiler, and only App Designer apps can be
deployed as web apps. In addition, certain functionality is not supported in deployed web apps. For
more information, see “Limitations and Unsupported Functionality” (MATLAB Compiler).

Once you have MATLAB Compiler on your system, you can open the Web App Compiler from within

App Designer by clicking Share B4 in the Designer tab and selecting Web App. For more
information, see “Web Apps” (MATLAB Compiler).

Create a Standalone Desktop Application

Creating a standalone desktop application lets you share an app with users who do not have MATLAB
on their systems. However, you must have MATLAB Compiler installed on your system to create the
standalone application. Your users must have MATLAB Runtime on their systems to run the app.

Once you have MATLAB Compiler on your system, you can open the Application Compiler from within
App Designer by clicking Share 4 in the Designer tab and selecting Standalone Desktop App.

If you used GUIDE or created your app programmatically, you can open the Application Compiler
from the MATLAB Toolstrip, on the Apps tab, by clicking the Application Compiler icon.

See “Create Standalone Application from MATLAB” (MATLAB Compiler) for instructions on using the
Application Compiler.

See Also
Related Examples

. “Get and Create Apps” on page 21-2
. “Ways to Build Apps” on page 1-2

21-13

21 Packaging GUIs as Apps

MATLAB App Installer File — mlappinstall

21-14

A MATLAB app installer file, .mlappinstall, is an archive file for sharing an app you created using
MATLAB. A single app installer file contains everything necessary to install and run an app: the
source code, supporting data, information (such as product dependencies), and the app icon.

An .mlappinstall file is a compressed package that conforms to the Open Packaging Conventions
(OPC) interoperability standard. You can search for and install .mlappinstall files using your
operating system file browser. When you select an .mlappinstall file in Windows Explorer or Quick
Look (Mac OS), the browser displays properties for the file, such as Authors and Release. Use
these properties to search for .mlappinstall files. Use the Tags property to add custom
searchable text to the file.

See Also

Related Examples
. “Package Apps From the MATLAB Toolstrip” on page 21-5

App Packaging Dependency Analysis

App Packaging Dependency Analysis

When you create an app package, MATLAB analyzes your main file and attempts to include all the
files that your app uses. However, MATLAB is not guaranteed to find every dependent file. It does not
find files for functions that your code references as character vectors (for instance, as arguments to
eval, feval, and callback functions). In addition, MATLAB can include some files that the main file
never calls when it runs.

Dependency analysis searches for the following types of files:

* Executable files, such as MATLAB program files, P-files, Fig-files, and MEX-files.

» Files that your app accesses by calling standard and low-level I/O functions. These dependent files
include text files, spreadsheets, images, audio, video, and XML files.

» Files that your app accesses by calling any of these functions: audioinfo, audioread, csvread,
daqread, dlmread, fileread, fopen, imfinfo, importdata, imread, load, matfile,
mmfileinfo, open, readtable, type, VideoReader, x1lsfinfo, xlsread, xmlread, and
xslt.

Dependency analysis does not search for Java classes, . jar files, or files stored in a scientific format

such as NetCDF or HDF. Click Add files/folders in the Package Apps dialog box to add these types of
files manually.

See Also
matlab.codetools.requiredFilesAndProducts

21-15

	Introduction to Creating Apps
	About Apps in MATLAB Software
	Ways to Build Apps
	Use App Designer
	Use MATLAB Functions to Create Apps Programmatically

	A Simple Programmatic App
	Create and Run a Simple figure-Based App
	Create a Code File
	Create the Figure Window
	Add Components to the UI
	Code the App Behavior
	Verify Code and Run the App

	How to Create a App with GUIDE
	Create a Simple App Using GUIDE
	Open a New UI in the GUIDE Layout Editor
	Set the Window Size in GUIDE
	Layout the UI
	Code the Behavior of the App
	Run the App

	Files Generated by GUIDE
	Code Files and FIG-Files
	Code File Structure
	Adding Callback Templates to an Existing Code File
	About GUIDE-Generated Callbacks

	App Designer
	App Designer Basics
	Create and Run a Simple App Using App Designer
	Run the Tutorial
	Tutorial Steps for Creating the App

	GUIDE Migration Strategies
	Export GUIDE App to MATLAB File
	Migrate GUIDE App to App Designer

	Display Graphics in App Designer
	App Designer Graphics Overview
	Display Graphics on Existing Axes
	Display Graphics in Container
	Create Axes Programmatically
	Use Functions With No Target Argument
	Use Functions That Don't Support Automatic Resizing
	Unsupported Functionality

	App Designer Preferences

	Component Choices and Customizations
	App Building Components
	Common Components
	Axes
	Containers and Figure Tools
	Dialogs and Notifications
	Instrumentation
	Extensible Components
	Toolbox Components

	Table Array Data Types in App Designer Apps
	Logical Data
	Categorical Data
	Datetime Data
	Duration Data
	Nonscalar Data
	Missing Data Values
	Example: App that Displays a Table Array

	Add UI Components to App Designer Programmatically
	Create the Component and Assign the Callback
	Write the Callback
	Example: Confirmation Dialog Box with a Close Function
	Example: App that Populates Tree Nodes Based on a Data File

	Create HTML File That Can Trigger or Respond to Data Changes
	Include Setup Function in Your HTML File
	Sample HTML File
	Debug an HTML File

	App Layout
	Lay Out Apps in App Designer Design View
	Customize Components
	Align and Space Components
	Group Components
	Reorder Components
	Arrange Components in Containers
	Create and Edit Context Menus

	Manage Resizable Apps in App Designer
	Resizing Graphics Objects with Normalized Position Units
	Alternatives to Default Auto-Resize Behaviors

	Use Grid Layout Managers
	Add and Configure Grid Layout Manager
	Convert Components from Pixel-Based Positions to Grid Layout Manager
	Example: Convert Components to Use Grid Layout Manager Instead of Pixel-Based Positions

	Apps with Auto-Reflow
	What is Auto-Reflow?
	Create New App with Auto-Reflow
	Convert Existing App to Use Auto-Reflow
	Example: App with Auto-Reflow

	App Programming
	Manage Code in App Designer Code View
	Manage Components, Functions, and Properties
	Identify Editable Sections of Code
	Program Your App
	Fix Code Problems and Run-Time Errors
	Personalize Code View Appearance

	Startup Tasks and Input Arguments in App Designer
	Create a startupFcn Callback
	Define Input App Arguments

	Create Multiwindow Apps in App Designer
	Overview of the Process
	Send Information to the Dialog Box
	Return Information to the Main App
	Manage Windows When They Close
	Example: Plotting App That Opens a Dialog Box

	Write Callbacks in App Designer
	Create a Callback Function
	Using Callback Function Input Arguments
	Searching for Callbacks in Your Code
	Deleting Callbacks
	Example: App with a Slider Callback

	Reuse Code Using Helper Functions
	Create a Helper Function
	Managing Helper Functions
	Example: Helper Function that Initializes Plots and Displays Updated Data

	Share Data Within App Designer Apps
	Example: Share Plot Data and a Drop-Down List Selection

	Compatibility Between Different Releases of App Designer
	Save Copy As Versus Save As
	Opening Apps for Editing in a Newer Release

	Use One Callback for Multiple App Designer Components
	Example of a Shared Callback
	Change or Disconnect a Callback

	App Designer Examples
	App that Calculates and Plots Data Based on Numerical Input
	App with Auto-Reflow That Updates Plot Based on User Selections
	App that Uses Grid Layout to Manage Component Positions and Resizing
	App That Displays Data in a Hierarchy Using Tree
	Create App that Uses Multiple Axes to Display Results of Image Analysis
	Create Polar Axes Programmatically in an App
	Create App with a Table That Can Be Sorted and Edited Interactively
	Create App with Timer Object Configured Programmatically
	Create App with Timer Object that Queries Website Data
	Share Data in Multiwindow Apps
	Display HTML Elements Styled by a Cascading Style Sheet

	Keyboard Shortcuts
	App Designer Keyboard Shortcuts
	Shortcuts Available Throughout App Designer
	Component Browser Shortcuts
	Design View Shortcuts
	Code View Shortcuts

	Create UIs Programmatically
	Lay Out a Programmatic UI
	Lay Out a UI Programmatically
	Component Placement and Sizing
	Managing the Layout in Resizable UIs
	Manage the Stacking Order of Grouped Components

	DPI-Aware Behavior in MATLAB
	Visual Appearance
	Using Object Properties
	Using print, getframe, and publish Functions

	Code a Programmatic App
	Write Callbacks for Apps Created Programmatically
	Callbacks for Different User Actions
	How to Specify Callback Property Values

	Manage Application-Defined Data
	Share Data Among Callbacks
	Overview of Data Sharing Techniques
	Store Data in UserData or Other Object Properties
	Store Data as Application Data
	Create Nested Callback Functions
	Store Data Using the guidata Function

	Manage Callback Execution
	Interrupt Callback Execution
	How to Control Interruption
	Callback Behavior When Interruption is Allowed
	Example

	Examples of Programmatic Apps
	Programmatic App that Displays a Table
	Create a Table UI Component Within a Figure
	Create a Table Containing Mixed Data Types
	Customize the Display
	Enable Column Sorting and Restrict Editing of Cell Values
	Create a Callback
	Get All Table Properties

	Developing Classes of UI Component Objects
	Custom UI Component Development Overview
	Structure of a UI Component Class
	Constructor Method
	Public and Private Property Blocks
	Event Block
	Setup Method
	Update Method
	Example: Color Selector UI Component

	Manage Properties of Custom UI Components
	Initialize Property Values
	Validate Property Values
	Customize the Property Display
	Optimize the update Method
	Example: Optimized Polynomial Fit UI Component with Customized Property Display

	Configure Custom UI Components for App Designer
	Custom UI Component Class Prerequisites
	Create a UI Component Class to Configure
	Configure App Designer Metadata
	View Configured UI Component in App Designer
	Reconfigure UI Component
	Remove UI Component From App Designer
	Share Configured UI Component

	Customize Properties of HTML UI Component
	Class Construction Overview
	RoundButton Class Implementation

	Create UIs with GUIDE
	What Is GUIDE?
	GUIDE: Getting Started
	UI Layout
	UI Programming

	GUIDE Preferences and Options
	GUIDE Preferences
	Set Preferences
	Confirmation Preferences
	Backward Compatibility Preference
	All Other Preferences

	GUIDE Options
	The GUI Options Dialog Box
	Resize Behavior
	Command-Line Accessibility
	Generate FIG-File and MATLAB File
	Generate FIG-File Only

	Lay Out a UI Using GUIDE
	Set the UI Window Size in GUIDE
	Prevent Existing Objects from Resizing with the Window
	Set the Window Position or Size to an Exact Value
	Maximize the Layout Area

	Add Components to the GUIDE Layout Area
	Place Components
	User Interface Controls
	Panels and Button Groups
	Axes
	Table
	Resize GUIDE UI Components

	Create Menus for GUIDE Apps
	Menus for the Menu Bar
	Context Menus

	Programming a GUIDE App
	Write Callbacks in GUIDE
	Callbacks for Different User Actions
	GUIDE-Generated Callback Functions and Property Values
	GUIDE Callback Syntax
	Share Data Among GUIDE Callbacks
	GUIDE Example: Share Slider Data Using guidata
	GUIDE Example: Share Data Between Two Apps
	GUIDE Example: Share Data Among Three Apps
	Renaming and Removing GUIDE-Generated Callbacks

	Callbacks for Specific Components
	How to Use the Example Code
	Push Button
	Toggle Button
	Radio Button
	Check Box
	Edit Text Field
	Slider
	List Box
	Pop-Up Menu
	Panel
	Button Group
	Menu Item
	Table
	Axes

	Examples of GUIDE Apps

	Examples of GUIDE UIs
	GUIDE App With Parameters for Displaying Plots
	Open and Run the Example
	Examine the Code

	Interactive List Box App in GUIDE
	Open and Run The Example
	Examine the Layout and Callback Code

	Automatically Refresh Plot in a GUIDE App
	Open and Run the Example
	Examine the Code

	App Packaging
	Packaging GUIs as Apps
	Get and Create Apps
	What Is an App?
	Where to Get Apps
	Why Create an App?
	Best Practices and Requirements for Creating an App

	Package Apps From the MATLAB Toolstrip
	Package Apps in App Designer
	Modify Apps
	Ways to Share Apps
	Share MATLAB Files Directly
	Package Your App
	Create a Deployed Web App
	Create a Standalone Desktop Application

	MATLAB App Installer File — mlappinstall
	App Packaging Dependency Analysis

